Advanced algebraic number theory

B. Allombert

IMB
CNRS/Université de Bordeaux
08/06/2018

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement $N^{\circ} 676541$

polgalois

We can compute the Galois group of the Galois closure of a number field, as an transitive group. Restricted to degree ≤ 7, or degree ≤ 11 with the galdata optional package.
$P 1=x^{\wedge} 4-5 ;$
polgalois(P1)
$\% 2=[8,-1,1, \quad \mathrm{D}(4) \mathrm{l}]$
Interpretation: the Galois group has order 8, is not contained in the alternating group, and is isomorphic to D_{4}.

polgalois

$$
\begin{aligned}
& P 2=x^{\wedge} 4-x^{\wedge} 3-7 \star x^{\wedge} 2+2 * x+9 \\
& \text { polgalois }(P 2) \\
& \% 4=[12,1,1, \quad \text { A4 } 4]
\end{aligned}
$$

The Galois group has order 12 and signature 1, and is isomorphic to A_{4}.

$$
\begin{aligned}
& \text { P3 }=x^{\wedge} 4-x^{\wedge} 3-3 * x^{\wedge} 2+x-1 ; \\
& \text { polgalois }(\text { P } 3) \\
& \% 6=[24,-1,1, \quad \text { S4 "] }
\end{aligned}
$$

The Galois group has order 24 and signature -1 , and is isomorphic to S_{4}.

nfsplitting

We can compute a polynomial defining the splitting field of the input polynomial, that is, the smallest field over which the input polynomial is a product of linear factors.

```
Q1 = nfsplitting(P1)
%7 = x^8 + 70*x^4 + 15625
Q2 = nfsplitting(P2)
%8 = x^12 - 59*x^10 + 1269*x^8 - 12231*x^6
    + 51997*x^4 - 79707*x^2 + 26569
```

This is the same as a defining polynomial for the Galois closure of the number field generated by one root of the input polynomial.

nfsplitting

The polynomial output by insplitting can be large.

```
Q3 = nfsplitting(P3)
%9 = x^24+12*x^23-66*x^22-1232*x^21+735*x^20
    +54012*x^19+51764*x^18-1348092*x^17-2201841*x^16
    +21708244*x^15+41344014*x^14-241723272**^13
    -454688929*x^12+1972336584*x^11+3130578366* *^10
    -12348327032*x^9-13356023346*x^^8+59757161004**^7
    +32173517686*x^6-204540935496*x^5-11176476888**^4
    +433089193668*x^3-155456858376*x^2-422808875280*x
    +320938557273
```


polredbest

We can use polredbest to compute a simpler polynomial defining the same number field.

$$
\begin{aligned}
& \text { Q3 }=\text { polredbest }(Q 3) \\
& \% 10=x^{\wedge} 24-6 * x^{\wedge} 23+18 * x^{\wedge} 22-38 * x^{\wedge} 21+60 * x^{\wedge} 20-54 * x^{\wedge} 19 \\
& -13 * x^{\wedge} 18+126 * x^{\wedge} 17-228 * x^{\wedge} 16+220 * x^{\wedge} 15+24 * x^{\wedge} 14 \\
& -396 * x^{\wedge} 13+521 * x^{\wedge} 12-216 * x^{\wedge} 11-48 * x^{\wedge} 10-32 * x^{\wedge} 9-66 * x^{\wedge} 8 \\
& +666 * x^{\wedge} 7-1013 * x^{\wedge} 6+348 * x^{\wedge} 5+510 * x^{\wedge} 4-654 * x^{\wedge} 3+234 * x^{\wedge} 2 \\
& +36 * x+9
\end{aligned}
$$

galoisinit

We can use galoisinit to compute the automorphism group of a number field that is Galois over \mathbb{Q}, under certain condition on the group ("weakly super-solvable").
gal = galoisinit(Q3);
The gen component is a list of generators of the automorphism group, expressed as permutations of the roots.

```
gal.gen
%12 = [Vecsmall([19,11,17,14,13,12,10,9,8,7,2,6,5,
    4,23,22,3,21,1,24,18,16,15,20]),Vecsmall([14,10,5,
    19,3,24,11,16,22,2,7,20,17,1,21,8,13,23,4,12,15,9,
    18,6]),Vecsmall([5,15,6,13,20,19,23,7,11,18, 21,4,
    12,17,16,2,24,22,3,1,9,10,8,14]) ,Vecsmall([2,1,9,
    10,16,21,14,17,3,4,19,18,22,7,20,5,8,12,11,15,6,
    13,24,23])]
```


galoisinit

The orders components contains orders of composition factors of the group, and their product is the order of the group.

```
ord = gal.orders
%13 = Vecsmall([2, 2, 3, 2])
prod(i=1,#ord,ord[i])
%14 = 24
```

With the function galoisidentify, we can obtain the GAP4 index of the group.
galoisidentify(gal) $\% 15=[24,12]$

See http://pari.math.u-bordeaux.fr/galpol/ for the numbering.

Effective Galois theory

galoissubgroups computes the list of all subgroups of a group.

```
L = galoissubgroups(gal);
#L
%17 = 30
```

Then we can compute fixed fields of various subgroups of the Galois group with galoisfixedfield.

```
R1 = galoisfixedfield(gal,L[25])[1];
polgalois(R1)
%19 = [24, 1, 1, "S_4(6d) = [2^2]S(3)"]
R2 = galoisfixedfield(gal,L[28])[1];
polgalois(R2)
%21 = [24, -1, 1, "S_4(6c) = 1/2[2^3]S(3)"]
```


Ramification groups

We can compute ramification groups. Let's first find the ramified primes.

```
nf = nfinit(Q3);
factor(nf.disc)
%23=
[ [3 28]
[11 16]
```

The ramified primes are 3 and 11 .
dec3 = idealprimedec (nf, 3);
pr3 = dec3[1];
[\#dec3, pr3.f, pr3.e]
$\% 26=[4,1,6]$

There are 4 prime ideals above 3 . They have residue degree 1 and ramification index 6 .

Ramification groups

We compute the sequence of ramification groups
with idealramgroups.

```
ram3 = idealramgroups(nf,gal,pr3);
#ram3
%28 = 3
```

There are three nontrivial ramification groups to consider.

```
galoisidentify(ram3[1])
%29 = [6, 1]
galoisisabelian(ram3[1])
%30 = 0
```

The decomposition group has order 6, and is isomorphic to S_{3}.

Ramification groups

```
galoisidentify(ram3[2])
%31 = [6, 1]
```

The inertia group equals the decomposition group (we already knew that since the residue degree is 1).
galoisidentify(ram3[3])
$\% 32=[3,1]$
The wild inertia group is the cyclic group C_{3}, and all the higher ramification groups are trivial.

Ramification groups

```
dec11 = idealprimedec(nf,11);
pr11 = dec11[1];
[#dec11, pr11.f, pr11.e]
%35 = [4, 2, 3]
```

There are 4 prime ideals above 11. They have residue degree 2 and ramification index 3.

```
ram11 = idealramgroups(nf,gal,pr11);
#ram11
%37 = 2
```

The wild ramification group is trivial (which we knew since 11 is coprime to the group order).

Ramification groups

```
galoisidentify(ram11[1])
%38 = [6, 1]
galoisidentify(ram11[2])
%39 = [3, 1]
```

The decomposition group is isomorphic to S_{3} (we already knew it had index 4 in the Galois group), and the inertia group is C_{3} (we already knew it had index 2 in the decomposition group).

Frobenius elements

At an unramified prime, we can compute the Frobenius element with idealfrobenius.
dec2 = idealprimedec (nf,2);
pr2 = dec2[1];
[\#dec2, pr2.f, pr2.e]
$\% 42=[6,4,1]$
frob2 = idealfrobenius(nf,gal,pr2);
permorder (frob2)
$\div 44=4$
We check that the Frobenius element has order equal to the residue degree.

Explicit Kronecker-Weber theorem

We can construct abelian extensions of \mathbb{Q} with polsubcyclo.
$\mathrm{N}=7 \star 13 * 19 ;$
$\mathrm{L} 1=$ polsubcyclo $(\mathrm{N}, 3) ;$
We now have the list of degree 3 subfields of $\mathbb{Q}\left(\zeta_{N}\right)$, where $N=7 \cdot 13 \cdot 19$.

$$
\begin{aligned}
& \mathrm{L} 2=[\mathrm{P} \mid \mathrm{P}<-\mathrm{L} 1, \text { \#factor (nfinit }(P) . \operatorname{disc})[, 1]==3] \\
& \% 47=\left[x^{\wedge} 3+x^{\wedge} 2-576 * x+5123, x^{\wedge} 3+x^{\wedge} 2-576 * x-64,\right. \\
& \left.x^{\wedge} 3+x^{\wedge} 2-576 * x-5251, x^{\wedge} 3+x^{\wedge} 2-576 * x+1665\right]
\end{aligned}
$$

We select the ones that are ramified at the three primes 7,13 and 19.

Explicit Kronecker-Weber theorem

We compute the structure and generators of $(\mathbb{Z} / N \mathbb{Z})^{\times}$ with znstar.
$G=$ znstar (N)
$\% 48=[1296,[36,6,6],[\operatorname{Mod}(743,1729)$, $\operatorname{Mod}(248,1729), \operatorname{Mod}(407,1729)]]$

We construct the matrix of a specific subgroup of index 3 :
$\mathrm{H}=\operatorname{mathn} \mathrm{fmodid}([1,0 ;-1,1 ; 0,-1], 3) ;$

Explicit Kronecker-Weber theorem

We construct the corresponding abelian field.

```
pol = galoissubcyclo(G,H)
%50 = x^3 + x^2 - 576*x - 64
factor(nfinit(pol).disc)
%51=
[ ll 2]
[13 2]
[19 2]
```

We check the ramification of the corresponding number field.

Hilbert class field

To compute a Hilbert class field, we first need to compute the class group.

```
bnf = bnfinit(a^2+23);
bnf.cyc
%53 = [3]
```

The class group is isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$.

```
bnr = bnrinit(bnf,1);
bnr.mod
%55 = [[1, 0; 0, 1], []]
```

Technical point: we need to represent the class group as a ray class group with bnrinit.

Hilbert class field

Now we compute the Hilbert class field with rnfkummer.
$R=r n f k u m m e r(b n r)$
$\% 56=x^{\wedge} 3-3 * x+\operatorname{Mod}\left(a, a^{\wedge} 2+23\right)$
Conversely, from an abelian extension, we can recover its corresponding class group rnfconductor.

```
[cond,bnr,subg] = rnfconductor(bnf,R);
cond
%58 = [[1, 0; 0, 1], []]
subg
%59 = [3]
```

Here the conductor is trivial, and its norm group is trivial in the class group.

Ray class fields

We can also consider class fields with nontrivial conductor.

```
bnf = bnfinit(a^2+3);
bnr = bnrinit(bnf,6);
```

We can compute in advance the absolute degree, signature and discriminant of the corresponding class field with bnrdisc.

```
[deg,r1,D] = bnrdisc(bnr);
deg
%63 = 6
r1
%64 = 0
D
%65 = -34992
```


Ray class fields

We can also compute the corresponding relative information using the bnrdisc (...,1) option.

```
[degrel,r1rel,Drel] = bnrdisc(bnr,,,1);
degrel
%67 = 3
r1rel
%68 = 0
Drel
%69 =
[36 0]
[ 0 36]
```

The relative discriminant is given in HNF form.

Ray class fields

We compute a defining polynomial with rnfkummer. This can be time-consuming, so it is better to compute the relevant information without constructing the field, if possible.

```
\(\mathrm{R}=\) rnfkummer (bnr)
\(\div 70=x^{\wedge} 3-2\)
\(\mathrm{P}=\) rnfequation(bnf, R )
\(\% 71=x^{\wedge} 6+9 * x^{\wedge} 4-4 * x^{\wedge} 3+27 * x^{\wedge} 2+36 * x+31\)
nf \(=\) nfinit (P);
```

We check the absolute discriminant and signature.

```
nf.disc
%73 = -34992
nf.sign
%74=[0, 3]
```


Ray class fields

We can also compute Frobenius information without the explicit field.
id31 = idealprimedec (bnf,31) [1];
bnrisprincipal(bnr,id31,0)
$\% 76=[0] \sim$
The Frobenius at \mathfrak{p}_{31} is trivial.
ispower (Mod $(2,31), 3)$
$\% 77=1$
Indeed, 31 is split in $F(\sqrt[3]{2})$.

Analytic class number formula

We compute the value at 0 of the first derivative of the Hecke L-function attached to a nontrivial character χ of our class group, using lfun.
r = lfun([bnr, [1]],0,1)
$\% 78=1.3473773483293841009181878914456+0 . \mathrm{E}-61 * I$
By the factorisation of the Dedekind zeta function and the analytic class number formula, we can recover a unit in the class field.

```
R2 = algdep(exp (r),3)
%79 = x^3 - 3*x^2 - 3*x - 1
P2 = rnfequation(bnf,R2);
nfisisom(P2,nf) !=0
%81 = 1
```

We reconstructed the class field using the L-function.

Modulus with infinite places

If the base field has real places, we can specify the modulus at infinity by providing a list of 0 or 1 of length the number of real embeddings.

```
bnf=bnfinit(a^2-217);
bnf.cyc
%83 = []
bnrinit(bnf,1).cyc
%84 = []
bnrinit(bnf,[1,[1,1]]).cyc
%85 = [2]
```

The field $\mathbb{Q}(\sqrt{217})$ has narrow class number 2.

Transcendental methods

For quadratic fields, ray class groups can be computed using transcendental methods using quadhilbert and quadray.

```
quadhilbert(-31)
%86 = x^3 + x^2 + 1
lift(quadray(13,7))
%87 = x^3 + (-7*y - 11)*x^2 + (56*y + 73)*x
    + (-91*y - 118)
```

With rnfkummer, the cost of the computation mostly depends on the degree of the extension but not much on the conductor; with transcendental methods, the cost mostly depends on the conductor.

Galois action on the class group

We can compute the Galois action on ray class groups with bnrgaloismatrix, i.e. the Galois action on the relative Galois group, without the explicit abelian extension.

```
bnf = bnfinit(x^2+2* 3*5*7*11);
bnf.cyc
%89 = [4, 2, 2, 2]
bnr = bnrinit(bnf,1,1);
gal = galoisinit(bnf);
m = bnrgaloismatrix(bnr,gal)[1]
%92 =
[3 0 0 0]
[0}01~000
[0}00 1 0)
[0}00<0<1
```


Questions?

Have fun with GP!

