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Minimal equations

K : field with a discrete valuation v.
R : ring of integers of K
E : elliptic curve defined over K.

E:y?+aixy + a3y = x> + apx° + agx + ag (aj € K).
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Minimal equations

K : field with a discrete valuation v.
R : ring of integers of K
E : elliptic curve defined over K.
E:y?+aixy +asy = x>+ ax® + agx + ag (aj € K).
Recall that a Weierstrass equation of E is said to be

» v-integral if all a; € R;

» v-minimal if it is v-integral, and v(A) is minimal among all
possible v-integral Weierstrass equations of E.
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Minimal equations

E:y? +aixy + azy = x>+ apx® + agx + ag (aj € K).
Remind that

» v-integral equations always exist (clear denominators) ;
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Minimal equations

E:y? +aixy + azy = x>+ apx® + agx + ag (aj € K).
Remind that

» v-integral equations always exist (clear denominators) ;

» v-minimal equations always exist, and are unique up to

x=u?x"+r

y

. X-
[u,r,s, t]: By b e 4t (ue R ;r;s,teR).

We have A = ul2A’.
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Minimal equations

E:y? +aixy + azy = x>+ apx® + agx + ag (aj € K).
Remind that

» v-integral equations always exist (clear denominators) ;

» v-minimal equations always exist, and are unique up to

x=u?x"+r

[u,r,s,t]: (ue R*;r,s,teR).

2

y=u3y' +usx +t

We have A = ul2A’.

Remark
If the equation is v-integral and v(A) < 12, then it is v-minimal.
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Minimal equations

Why do we need to compute minimal equations ?
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Minimal equations

Why do we need to compute minimal equations ?

E : elliptic curve defined over a number field K

» Compute the L-function
L(E,s) =[] L,(E,s).
p

L,(E,s) is defined using a minimal equation of E at p.

F. Brunault elinflocalred



Minimal equations

Why do we need to compute minimal equations ?

E : elliptic curve defined over a number field K

» Compute the L-function
L(E,s) =[] L,(E,s).
p

L,(E,s) is defined using a minimal equation of E at p.

» Compute the local height functions

hy : E(Ky)\{0} > R.
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Minimal equations

Further local informations

K : number field
E : elliptic curve over K

F. Brunault elinflocalred



Minimal equations

Further local informations

K : number field
E : elliptic curve over K

p : prime ideal of Ok

ky : residue field of p
E/ky, : reduction of a p-minimal equation of E
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Minimal equations

Further local informations

K : number field
E : elliptic curve over K

p : prime ideal of Ok
ky : residue field of p

E/ky, : reduction of a p-minimal equation of E

If E is singular, we may need a refined model of E at p, the
minimal (proper) regular model of E at p.
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Minimal equations

Further local informations

K : number field
E : elliptic curve over K

p : prime ideal of Ok
ky : residue field of p

E/ky, : reduction of a p-minimal equation of E

If E is singular, we may need a refined model of E at p, the
minimal (proper) regular model of E at p.

The possible reduction types of minimal regular models have been
classified by Kodaira, Néron.
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Minimal equations

Further local informations

K : number field
E : elliptic curve over K

F. Brunault elinflocalred



Minimal equations

Further local informations

K : number field
E : elliptic curve over K

» Ng conductor of E (ideal of Ok)
(enters into the functional equation of L(E,s))

Ng =1, p®
f, : conductor exponent of E at p
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Minimal equations

Further local informations

K : number field
E : elliptic curve over K

» Ng conductor of E (ideal of Ok)
(enters into the functional equation of L(E,s))

Ng =TT, p"
f, : conductor exponent of E at p

» ¢p : Tamagawa number of E at p

& = #(E(Kyp)/Eo(Kyp))
(enters into the BSD conjecture for E)
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Tate’s algorithm

Tate’s algorithm

Input :

» E =[a1,ar,as3,a4,36] : elliptic curve over K
» p : prime ideal of Ok
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Tate’s algorithm

Tate’s algorithm

Input :

» E =[a1,ar,as3,a4,36] : elliptic curve over K
» p : prime ideal of Ok

Output :
» [u,r,s,t] : change of variables to a p-minimal equation
» reduction type of E at p (Kodaira symbol)
» f, : conductor exponent of E at p

» ¢p : Tamagawa number of E at p
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Tate’s algorithm

PARI/GP has an implementation of Tate's algorithm for elliptic
curves over Q :
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Tate’s algorithm

PARI/GP has an implementation of Tate's algorithm for elliptic
curves over Q :

elllocalred(E,p): E being an elliptic curve, returns
[f,kod, [u,r,s,t],c], where f is the conductor’s exponent,
kod is the Kodaira type for E at p, [u,r,s,t] is the
change of variable needed to make E minimal at p, and

¢ is the local Tamagawa number c_p.

F. Brunault elinflocalred



Tate’s algorithm

PARI/GP has an implementation of Tate's algorithm for elliptic
curves over Q :

elllocalred(E,p): E being an elliptic curve, returns
[f,kod, [u,r,s,t],c], where f is the conductor’s exponent,
kod is the Kodaira type for E at p, [u,r,s,t] is the
change of variable needed to make E minimal at p, and

¢ is the local Tamagawa number c_p.

We would like an analogous function ellnflocalred(E,nf,P).
E : elliptic curve as output by ellinit

nf : number field as output by nfinit

P : prime ideal of nf

Currently I implemented ellnflocalred(E,nf,P) only in the
”easy” case where the residual characteristic of P is > b.
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Tate’s algorithm

Assume char(k,) > 5. There are basically two steps in Tate's
algorithm :
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Tate’s algorithm

Assume char(k,) > 5. There are basically two steps in Tate's
algorithm :

1. Find a p-minimal equation;;
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Tate’s algorithm

Assume char(k,) > 5. There are basically two steps in Tate's
algorithm :

1. Find a p-minimal equation;;

2. Compute the local invariants.
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Tate’s algorithm

Assume char(k,) > 5. There are basically two steps in Tate's
algorithm :

1. Find a p-minimal equation;;

2. Compute the local invariants.

Step 1 is easy since E admits a reduced equation
E:y?=x3-2Tcax - bhce (ca,c6 € Ok).

» If vy(csa) <4 or vy(cs) <6, then this equation is p-minimal.

» Otherwise, put k = min([%], [@J) and let
(ca,c6) < (%, %) where 7 is a uniformizer at p.
Then the resulting equation is p-minimal.
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Tate’s algorithm

Remarks

» When doing (¢4, ¢c) < (%, %) we don't want to lose

integrality. So instead of taking an arbitrary uniformizer 7, we
compute an element 7’ = % such that v,(7") = -1 and
vq(7") > 0 for any q # p. For this we use idealappr.
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Tate’s algorithm

Remarks

» When doing (¢4, ¢c) < (%, %) we don't want to lose
integrality. So instead of taking an arbitrary uniformizer 7, we
compute an element 7’ = L such that v, (') = -1 and
vq(7") > 0 for any q # p. For this we use idealappr.

» If p is principal, the function takes a generator w of p as
optional argument.
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Tate’s algorithm

Remarks

» When doing (¢4, ¢c) < (%, %) we don't want to lose
integrality. So instead of taking an arbitrary uniformizer 7, we
compute an element 7’ = L such that v, (') = -1 and
vq(7") > 0 for any q # p. For this we use idealappr.

» If p is principal, the function takes a generator w of p as
optional argument.

» We may well have v4(7") > 0 for some q # p. In this case,

multiplying by (7/**,7'°%) does not preserve g-minimality.

We cannot avoid this since p need not be principal.
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Further questions

What remains to be done :

» Case of residual characteristic 2 and 3;
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Further questions

What remains to be done :

» Case of residual characteristic 2 and 3;

» Compute the local root number of E at p
(Halberstadt, Kobayashi, Dokchitser-Dokchitser, Whitehouse)
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Further questions

What remains to be done :

» Case of residual characteristic 2 and 3;

» Compute the local root number of E at p
(Halberstadt, Kobayashi, Dokchitser-Dokchitser, Whitehouse)

» Compute a global minimal equation (when it exists) :
Kraus-Laska-Connell's algorithm
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Further questions

What remains to be done :

» Case of residual characteristic 2 and 3;

» Compute the local root number of E at p
(Halberstadt, Kobayashi, Dokchitser-Dokchitser, Whitehouse)

» Compute a global minimal equation (when it exists) :
Kraus-Laska-Connell's algorithm

Question :
How to encode the local Galois representation of E at p

pep : Gal(K,y/Kp) = GL2(Z/nZ)?
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