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Minimal equations
Tate’s algorithm

Further questions

K : field with a discrete valuation v .
R : ring of integers of K
E : elliptic curve defined over K .

E ∶ y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (ai ∈ K).

Recall that a Weierstrass equation of E is said to be

▸ v-integral if all ai ∈ R ;

▸ v-minimal if it is v -integral, and v(∆) is minimal among all
possible v -integral Weierstrass equations of E .

F. Brunault ellnflocalred



Minimal equations
Tate’s algorithm

Further questions

K : field with a discrete valuation v .
R : ring of integers of K
E : elliptic curve defined over K .

E ∶ y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (ai ∈ K).

Recall that a Weierstrass equation of E is said to be

▸ v-integral if all ai ∈ R ;

▸ v-minimal if it is v -integral, and v(∆) is minimal among all
possible v -integral Weierstrass equations of E .

F. Brunault ellnflocalred



Minimal equations
Tate’s algorithm

Further questions

E ∶ y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (ai ∈ K).

Remind that

▸ v -integral equations always exist (clear denominators) ;

▸ v -minimal equations always exist, and are unique up to

[u, r , s, t] ∶
⎧⎪⎪⎨⎪⎪⎩

x = u2x ′ + r
y = u3y ′ + u2sx ′ + t

(u ∈ R×; r , s, t ∈ R).

We have ∆ = u12∆′.

Remark
If the equation is v -integral and v(∆) < 12, then it is v -minimal.
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Minimal equations
Tate’s algorithm

Further questions

Why do we need to compute minimal equations ?

E : elliptic curve defined over a number field K

▸ Compute the L-function

L(E , s) =∏
p

Lp(E , s).

Lp(E , s) is defined using a minimal equation of E at p.

▸ Compute the local height functions

hp ∶ E(Kp)/{0} → R.
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Tate’s algorithm

Further questions

Further local informations

K : number field
E : elliptic curve over K

p : prime ideal of OK

kp : residue field of p
E/kp : reduction of a p-minimal equation of E

If E is singular, we may need a refined model of E at p, the
minimal (proper) regular model of E at p.

The possible reduction types of minimal regular models have been
classified by Kodaira, Néron.
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Minimal equations
Tate’s algorithm

Further questions

Further local informations

K : number field
E : elliptic curve over K

▸ NE conductor of E (ideal of OK )
(enters into the functional equation of L(E , s))

NE = ∏p p
fp

fp : conductor exponent of E at p

▸ cp : Tamagawa number of E at p
cp = #(E(Kp)/E0(Kp))
(enters into the BSD conjecture for E )
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Tate’s algorithm

Input :

▸ E = [a1, a2, a3, a4, a6] : elliptic curve over K

▸ p : prime ideal of OK

Output :

▸ [u, r , s, t] : change of variables to a p-minimal equation

▸ reduction type of E at p (Kodaira symbol)

▸ fp : conductor exponent of E at p

▸ cp : Tamagawa number of E at p
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Minimal equations
Tate’s algorithm

Further questions

PARI/GP has an implementation of Tate’s algorithm for elliptic
curves over Q :

elllocalred(E,p): E being an elliptic curve, returns

[f,kod,[u,r,s,t],c], where f is the conductor’s exponent,

kod is the Kodaira type for E at p, [u,r,s,t] is the

change of variable needed to make E minimal at p, and

c is the local Tamagawa number c p.

We would like an analogous function ellnflocalred(E,nf,P).
E : elliptic curve as output by ellinit

nf : number field as output by nfinit

P : prime ideal of nf

Currently I implemented ellnflocalred(E,nf,P) only in the
”easy” case where the residual characteristic of P is ⩾ 5.
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Assume char(kp) ⩾ 5. There are basically two steps in Tate’s
algorithm :

1. Find a p-minimal equation ;

2. Compute the local invariants.

Step 1 is easy since E admits a reduced equation

E ∶ y2 = x3 − 27c4x − 54c6 (c4, c6 ∈ OK).

▸ If vp(c4) < 4 or vp(c6) < 6, then this equation is p-minimal.

▸ Otherwise, put k = min(⌊ vp(c4)4 ⌋, ⌊ vp(c6)6 ⌋) and let

(c4, c6) ← ( c4
π4k ,

c6
π6k ) where π is a uniformizer at p.

Then the resulting equation is p-minimal.
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Remarks

▸ When doing (c4, c6) ← ( c4
π4k ,

c6
π6k ), we don’t want to lose

integrality. So instead of taking an arbitrary uniformizer π, we
compute an element π′ = 1

π such that vp(π′) = −1 and
vq(π′) ⩾ 0 for any q ≠ p. For this we use idealappr.

▸ If p is principal, the function takes a generator π of p as
optional argument.

▸ We may well have vq(π′) > 0 for some q ≠ p. In this case,

multiplying by (π′4k , π′6k) does not preserve q-minimality.
We cannot avoid this since p need not be principal.
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Further questions

What remains to be done :

▸ Case of residual characteristic 2 and 3 ;

▸ Compute the local root number of E at p
(Halberstadt, Kobayashi, Dokchitser-Dokchitser, Whitehouse)

▸ Compute a global minimal equation (when it exists) :
Kraus-Laska-Connell’s algorithm

Question :
How to encode the local Galois representation of E at p

ρE ,p ∶ Gal(Kp/Kp) → GL2(Z/nZ)?
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