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First part: Theory
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L and A-functions (1/3)

Let Tr(s) = 7~ 5/2T'(s/2), where I is Euler's gamma function; given a d-tuple
A=lag,...,oq) € CLiletya = [Taea Tr(s + )

Given

® asequence a = (ay)n>1 of complex numbers such that a; = 1,
O 2 positive conductor N € Z~y,

O a gamma factor v 4 as above,

we consider the Dirichlet series

and the associated completed function

AN,A(av S) — NS/2 | /VA(S) ) L(CL, S)'
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L and A-functions (2/3)

A weak L-function is a Dirichlet series L(s) = >~ apn ™ such that

® The coefficients a,, = O.(n“*%) have polynomial growth. Equivalently, L(s) converges
absolutely in some right half-plane R(s) > C' + 1.

P The function L(s) has a meromorphic continuation to the whole complex plane with finitely

many poles.

This becomes an L-function if it satisfies a functional equation: there exist a “dual” sequence a*

defining a weak L-function L(a*, s), an integer k, and completed functions
A(a,s) = N3~ 4(s) - L(a, s),

A(a*,s) = N2y 4(s) - L(a*, s),
such that A(a, k — s) = A(a™, s) for all regular points.
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L and A-functions (3/3)

In number theory, additional constraints arise

O o*f = ¢ . afor some root number € of modulus 1: often, ¢ = +1;

P the complex coeffients a live in the ring of integer of some fixed number field, often in Z or a

cyclotomic ring Z[(];

® the growth exponent such that a,, = O (n®“*¢) can be takenas C' = (k — 1)/2if Lis

entire (Ramanujan-Petersson), and C' = k — 1 otherwise;

® the L-function satisfies an Euler product L(s) = [[,, yime Lp(S), where the local factor

L,(s) is a rational function in p~*;

® the o are integers, often in {0, 1}.

The current PARI implementation assumes that a* = ¢ - @ and chooses C' as above; these
restrictions are being removed.
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O-functions

To an L-function, we associate a Theta function via Mellin inversion: for positive real t > 0, we let

Ola,t) = — A (s) ds

2T R(s)=c

where c is any positive real number ¢ > C' + 1 such that ¢ + R(a) > Oforalla € A. In fact,

we have

O(a,t) = Z anK (nt/NY?) where K(t) := 1 t °va(s)ds

1 271 JR(s)=c

and this function is analytic for complex ¢ such that %(tQ/d) > (), i.e. in a cone containing the

positive real half-line. The functional equation for A translates into
0(a,1/t) — t°0(a",t) = Pa(2),

where P, is a polynomial in £ and log t given by the Taylor development of the polar part of A:

there are no log’s if all poles are simple, and P = 0 if A is entire.
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Main algorithms (1/2)

First Goal: Approximate L(a, s), A(a, s), 6(a,t) and their derivatives at regular points.

® (1) Compute the inverse Mellin transform of y4(s):

1
- — —S d .
G(QL’) 9 %(s):cx ’YA(S) S

For large &, G() decreases exponentially, roughly as exp(—dm Re(z2/4)). Complexity
O(B°) for absolute error < 2~ and ¢(d) < 3 (e.g. ¢(1) = 1)

P (2) Compute
0(a,t) = a,G(nt/N'?);

n>1

for t > 1, absolute error 275, use roughly N1/2Bd/2 tgrms.
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Main algorithms (2/2)

® (3) Compute, for h small enough, A(a,s) = >, -7 Ala, s + 2min/h)

— explicit polar part + h Z ethH(% emh) A Z e’mh(/"ﬂ—é’)g(a*7 6mh)

m=1 m=1
The coefficients 0(a, e™"), 0(a*, e™") are independent of s!
» (4) Compute
L(a,5) = M(a, )N~/ [ya(s).

Secundary Goal: If some of the quantities needed before are unknown (e.g. N or as or...),
guess them from @'s functional equation evaluated in many points.
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Second part: Practice
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Data structures describing . and Theta functions

In PARI/GP we have 3 levels of description for Theta or L-functions:

® an Lmath is an high-level description of the underlying mathematical situation, to which e.g.,
we associate the a,, as traces of Frobenius elements; this is done via constructors to be

described shortly.

P an Ldata is a low-level description, containing the complete datum

(a,a™, A, k, N, N's polar part). This is obtained via the function lfuncreate.

P an Linit contains an Ldata and everything needed for fast numerical computations in a certain

domain: it specifies

(1) the functions to be considered either L7 (s) or #19) (t) for derivatives of order j < m,

where ™ is now fixed;
(2) the range of arguments ¢ or s, respectively to certain cones and rectangular regions;
(3) the output bit accuracy.

This is obtained via the functions Ifuninit and Ifunthetainit respectively.
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First example: Riemann zeta

L = 1funcreate(1); \\’1’ = Riemann zeta function
1fun(L, 2)

1funzeros(L,30)

\pb 32

L = 1funinit(L, [1/2, 0, 30]);

ploth(t = 0, 30, 1lfunhardy(L,t))

Generalization : Kronecker character. If D is a fundamental discriminant, then 1funcreate (D)

is L((D/.),s).
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Second example: Dedekind zeta

L = 1funcreate(’x"3-2); \\Q(2°(1/3))
1fun(L, 2)

1funzeros (L, 30)

\pb 32

L = 1funinit(L, [1/2, 0, 30]);
ploth(t = 0, 30, 1lfunhardy(L,t))
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Third example: Hasse-Welil zeta functions

E = ellinit([0,0,1,-7,6]);
. = 1funcreate(E); \\L(E,s)

1fun(L, 1)

1fun(E, 1)

1fun(L, 1, 1)\\L’

1fun(L, 1, 2)\\2nd derivative

1fun(L, 1, 3)\\3rd derivative
ellanalyticrank(E)

1funzeros (L, 30)

\pb 32

Lbad = 1funinit(L, [1/2, 0, 30]); \\BUG !!!
ploth(t = 0, 30, 1lfunhardy(Lbad,t))

L = 1funinit(L, [1, O, 30]); \\Better
ploth(t = 0, 30, 1lfunhardy(L,t))
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Dirichlet characters (1/3)

In PARI/GP, given a finite abelian group

G=(Z/oZ)g1 @ - B (Z]04Z)ga,

with fixed generators g; of respective order 0;, then

O the column vector [wl, e ,xd]~ represents the element g - & := Zz‘gd T;9;;
® the row vector [c1, .. ., cql, represents the character mapping g; — e(c; /0;) for each 1.

The group G is given by a GP structure, e.g. bid, bnf, bnr. We can choose (g;) := G.gen
(SNF generators), hence (07;) = G.Cyc and oy \ e | 01 (elementary divisors). But it is
possible to choose other generators.
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Dirichlet characters (2/3)

For Dirichlet characters modulo ¢ = Hp p°P, there is another standard choice: Conrey

generators (smallest primitive roots mod p°P). Conrey logarithm/exponential: map between

® clementsin (Z/qZ)*: znconreyexp,

P their discrete logs in terms of the Conrey generators: znconreylog, a column vector.

To such an element m € (Z/qZ)* we attach the Conrey character x4(m, -).

See also znconreychar (in terms of SNF generators); so three possible representation of a
character: one in terms of SNF generators and two (exp/log) in terms of Conrey generators.
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Dirichlet characters (3/3)

G = idealstar(, 100);

G.cyc

chi = [2,0]; \\in terms of SNF gens.
m = znconreyexp(G, chi)

c = znconreylog(G, m)

s = ideallog(, m, G) znconreylog(G, chi)
znconreychar (G, m)

znconreychar (G, c) \\Bad input !
znconreychar (G, s) \\OK
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Dirichlet L-function

N = 100; G = idealstar(, N); \\(Z/100Z)
G.cyc

chi = [2, O]

L = 1funcreate([G, chil);

znconreyconductor (G, chi) \\not primitive !
1fun(L, 1)

1funlambda(L, 1)

l1funtheta(L, 1)

N = znconreyconductor(G, chi, &chiO)

GO = idealstar(,N);

Atelier PARI/GP 2016 (12/01/2016) —p. 17/18



Hecke L-function

K = bnfinit(x~3-7);

G = bnrinit(K, [11, [1]]1);
G.cyc

chi = [1]

L = 1funcreate([G, chil);

1fun(L, 0)

L = 1funinit(L, [1/2,1/2,30]);
1fun(L, 0)

1fun(L, 1)

1funzeros(L,30)

ploth(t = 0, 30, 1lfunhardy(L,t))
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