Finding ECM friendly curves: A Galois approach

Sudarshan SHINDE

Université Pierre et Marie Curie, France

Motivation - ECM algorithm

Algorithm 1 ECM algorithm

INPUT: n

OUTPUT: a non-trivial factor of n.

- 1: $B \leftarrow B_n$.
- 2: while No factor is found do
- 3: $E \leftarrow \text{ an elliptic curve on } \mathbb{Q} \text{ and } P \in E(\mathbb{Q}), \text{ ord}(P) = \infty.$
- 4: $P_B \leftarrow [B!]P = (x_B : y_B : z_B) \mod n$
- 5: $g \leftarrow \gcd(z_B, n)$
- 6: if $g \notin \{1, n\}$ then return g
- 7: end if
- 8: end while

Idea of ECM

Idea

Let p be an unknown prime factor of n. If $\operatorname{ord}(P)$ in $E(\mathbb{F}_p)$ divides B!, then

$$(x_B:y_B:z_B) \equiv (0:1:0) \mod p.$$

In this case p divides $gcd(z_B, n)$.

Sufficient condition

 $\#E(\mathbb{F}_p)$ is B-smooth.

Idea of Montgomery

Lenstra : $\mathsf{Prob}(\#E(\mathbb{F}_p) \text{ is } B\text{-smooth})$

 \simeq Prob((random integer $\simeq p$ is B- smooth).

Montgomery : What if $\#E(\mathbb{F}_p)$ is even for all primes p?

Motivation - ECM algorithm

Algorithm 2 ECM algorithm + Montgomery

```
INPUT: n
OUTPUT: a non-trivial factor of n.
 1: B \leftarrow B_n, m \leftarrow B!
 2. while No factor is found do
        E \leftarrow an elliptic curve from a family and P = (x : y : z) \in
     E(\mathbb{O}).
                                \triangleright Ex. higher probability that 2|\#E(\mathbb{F}_p).
         P_m \leftarrow [m]P = (x_m : y_m : z_m) \mod n
 5: g \leftarrow \gcd(z_m, n)
 6: if g \notin \{1, n\} then return g
      end if
 8: end while
```

Montgomery heuristic

Larger $\frac{\sum_{p < B} (\mathsf{val}_2(\#E(\mathbb{F}_p))}{\sum_{p < B} 1}$ means bigger chance of success with ECM.

Average valuation

We define average valuation of $\#E(\mathbb{F}_p)$ at I using Chebotarev density as $\overline{\text{val}}_I = \sum_{k>0} k \operatorname{Prob}(\text{val}_I(\#E(\mathbb{F}_p)) = k)$.

How to change average valuation?

lacktriangle Montgomery : Torsion points over $\mathbb Q$

Montgomery heuristic

Larger $\frac{\sum_{p < B} (\mathsf{val}_2(\#E(\mathbb{F}_p))}{\sum_{p < B} 1}$ means bigger chance of success with ECM.

Average valuation

We define average valuation of $\#E(\mathbb{F}_p)$ at I using Chebotarev density as $\overline{\text{val}}_I = \sum_{k>0} k \operatorname{Prob}(\text{val}_I(\#E(\mathbb{F}_p)) = k)$.

How to change average valuation?

- $\textbf{ 0} \quad \mathsf{Montgomery} : \mathsf{Torsion} \ \mathsf{points} \ \mathsf{over} \ \mathbb{Q}$
- ② Brier and Clavier: Torsion points over $\mathbb{Q}(i)$ $\overline{\text{val}_2}(\#E(\mathbb{F}_p)) = \frac{1}{2}\overline{\text{val}_2}(\#E(\mathbb{F}_p)|p \equiv 1(4)) + \frac{1}{2}\overline{\text{val}_2}(\#E(\mathbb{F}_p)|p \equiv 3(4))$

Montgomery heuristic

Larger $\frac{\sum_{p < B} (\mathsf{val}_2(\#E(\mathbb{F}_p))}{\sum_{p < B} 1}$ means bigger chance of success with ECM.

Average valuation

We define average valuation of $\#E(\mathbb{F}_p)$ at I using Chebotarev density as $\overline{\text{val}}_I = \sum_{k>0} k \operatorname{Prob}(\text{val}_I(\#E(\mathbb{F}_p)) = k)$.

How to change average valuation?

- $\textbf{ 0} \quad \mathsf{Montgomery} : \mathsf{Torsion} \ \mathsf{points} \ \mathsf{over} \ \mathbb{Q}$
- ② Brier and Clavier: Torsion points over $\mathbb{Q}(i)$ $\overline{\text{val}_2}(\#E(\mathbb{F}_p)) = \frac{1}{2}\overline{\text{val}_2}(\#E(\mathbb{F}_p)|p \equiv 1(4)) + \frac{1}{2}\overline{\text{val}_2}(\#E(\mathbb{F}_p)|p \equiv 3(4))$
- Barbulescu et al : Better valuation without additional torsion points (Suyama-11)

Definition (*m*-torsion field)

Let E be an elliptic curve on \mathbb{Q} , m a positive integer. The m-torsion field $\mathbb{Q}(E[m])$ is defined as the smallest extension of \mathbb{Q} containing all the m-torsion points.

Let us note that $G = Gal(\mathbb{Q}(E[m])/\mathbb{Q})$ is always a subgroup of $GL_2(\mathbb{Z}/m\mathbb{Z})$.

Theorem (Serre)

- For all primes I and $k \ge 1$, the index $[\operatorname{GL}_2(\mathbb{Z}/I^k\mathbb{Z}) : \operatorname{Gal}(\mathbb{Q}(E[I^k])/\mathbb{Q})]$ is non-decreasing and bounded by a constant depending on E and I.
- For all primes I outside a finite set depending on E and for all $k \geq 1$, $\operatorname{GL}_2(\mathbb{Z}/I^k\mathbb{Z}) = \operatorname{Gal}(\mathbb{Q}(E[I^k])/\mathbb{Q})$.

How to change the average valuation?

Theorem (Barbulescu et al. 2012)

Let I be a prime and E_1 and E_2 be two elliptic curves. If $\forall n \in \mathbb{N}, \operatorname{Gal}(\mathbb{Q}(E_1[I^n])) \simeq \operatorname{Gal}(\mathbb{Q}(E_2[I^n]))$ then $v_I(E_1) = v_I(E_2)$.

Thus in order to change the average valuation, we must change $Gal(\mathbb{Q}(E_2[I^n]))$ for at least one n.

Constructing the *m*-torsion field

Definition - Theorem

For an elliptic curve E and a an integer m, we define the m-division polynomial as

$$\Psi_{(E,m)}(X) = \prod_{(x_P, \pm y_P) \in E[m] - O} (X - x_P) \qquad \in \mathbb{Q}[X].$$

We have $\deg(\Psi_{(E,m)}) = \frac{m^2+2-3\eta}{2}$ where $\eta = m\%2$.

From now on, we will restrict ourselves to prime torsion.

Given $E: y^2 = x^3 + ax + b$ and a prime I, we construct:

$$\mathbb{Q} \quad \to \mathbb{Q}(x_1) \quad \to \quad \mathbb{Q}(x_1, x_2) \quad \to \quad \mathbb{Q}(x_1, x_2, y_1) \quad \to \quad \mathbb{Q}(x_1, x_2, y_1, y_2)$$

where the polynomials defining the extensions are;

- **1** (An irreducible factor of) $\Psi_{(E,l)}$
- 2 An irreducible factor of $\Psi_{(E,I)}$ on $\mathbb{Q}(x_1)$.

$$\mathbb{Q}(x_1,x_2,y_1,y_2)=\mathbb{Q}(E[I]).$$

Let P be an irreducible polynomial of degree n in K[X] and let $\theta_1, ..., \theta_n$ be its roots in \bar{K} .

Definition (Resolvent polynomial)

Let $F(X_1,...,X_n)$ be a polynomial in $K[X_1,...,X_n]$ and G be a subgroup of S_n such that $G=\{\sigma\in S_n|F(X_{\sigma(1)},...,X_{\sigma(n)})=F(X_1,...,X_n)\}$. We define the resolvent polynomial

$$R_G(F, P)(X) = \prod_{\sigma \in S_n/G} (X - F(\theta_{\sigma(1)}, ..., \theta_{\sigma(n)})).$$

Theorem

Let P be a polynomial of degree n, G a transitive subgroup of S_n and F as above. Then, $R_G(F,P)(X) \in K[X]$ and if it has a simple root in K then $Gal(P) \subset G$ upto conjugacy.

Example : Let us consider the field $K = \mathbb{Q}(a, b, c, d)$ and the polynomial $P = X^4 + aX^3 + bX^2 + cX + d$. Let $G = D_8 = <(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) >$ and $F = X_1X_2 + X_3X_4$.

Example : Let us consider the field $K = \mathbb{Q}(a,b,c,d)$ and the polynomial $P = X^4 + aX^3 + bX^2 + cX + d$. Let $G = D_8 = <(3,4),(1,3)(2,4),(1,4)(2,3) >$ and $F = X_1X_2 + X_3X_4$. In this case, $R_G(F,P) = X^3 - (\theta_1\theta_2 + \theta_1\theta_3 + \theta_1\theta_4 + \theta_2\theta_3 + \theta_2\theta_4 + \theta_3\theta_4)X^2 + (\theta_1^2\theta_2\theta_3 + \theta_1^2\theta_2\theta_4 + \theta_1^2\theta_3\theta_4 + \theta_1\theta_2^2\theta_3 + \theta_1\theta_2^2\theta_4 + \theta_1\theta_2\theta_3^2 + \theta_1\theta_2\theta_4^2 + \theta_1\theta_3^2\theta_4 + \theta_1\theta_3\theta_4^2 + \theta_2^2\theta_3\theta_4 + \theta_2\theta_3^2\theta_4 + \theta_2\theta_3\theta_4^2 + \theta_2\theta_3^2\theta_4^2 - \theta_2^2\theta_3^2\theta_4^2 - \theta_1^3\theta_2\theta_3^2\theta_4 - \theta_1^3\theta_2\theta_3\theta_4 - \theta_1\theta_2\theta_3^3\theta_4 - \theta_1\theta_2\theta_3\theta_4^3$.

Example : Let us consider the field $K = \mathbb{Q}(a, b, c, d)$ and the polynomial $P = X^4 + aX^3 + bX^2 + cX + d$. Let $G = D_8 = <(3,4),(1,3)(2,4),(1,4)(2,3) >$ and $F = X_1X_2 + X_3X_4$. In this case, $R_G(F,P) = X^3 - (\theta_1\theta_2 + \theta_1\theta_3 + \theta_1\theta_4 + \theta_2\theta_3 + \theta_2\theta_4 + \theta_3\theta_4)X^2 + (\theta_1^2\theta_2\theta_3 + \theta_1^2\theta_2\theta_4 + \theta_1^2\theta_3\theta_4 + \theta_1\theta_2^2\theta_3 + \theta_1\theta_2^2\theta_4 + \theta_1\theta_2\theta_3^2 + \theta_1\theta_2\theta_4^2 + \theta_1\theta_3^2\theta_4 + \theta_1\theta_3\theta_4^2 + \theta_2^2\theta_3\theta_4 + \theta_2\theta_3^2\theta_4 + \theta_2\theta_3\theta_4^2 + \theta_2\theta_3^2\theta_4^2 - \theta_2^2\theta_3^2\theta_4^2 - \theta_1^3\theta_2\theta_3^2\theta_4 - \theta_1^3\theta_2\theta_3\theta_4 - \theta_1\theta_2\theta_3^3\theta_4 - \theta_1\theta_2\theta_3\theta_4^3$.

We now apply the fundamental theorem of symmetric polynomials to get $R_G(F,P) = X^3 - bX^2 + (ac - 4d)X - a^2d - c^2 + 4bd$.

Theorem

Let $P = X^4 + bX^2 + cX + d$ be an irreducible rational polynomial. Then we have,

- $Gal(P) \subset D_8$ if, and only if, $X^3 bX^2 4dX c^2 + 4bd$ has a rational root.
- ② $Gal(P) \subset V_4 = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ if, and only if, $X^6 6bX^5 + (13b^2 24d)X^4 + (-12b^3 + 96bd)X^3 + (4b^4 120b^2d + 144d^2)X^2 + (48b^3d 288bd^2)X + 4b^3c^2 16b^4d + 27c^4 144bc^2d + 272b^2d^2 256d^3$ has a rational root.

Remark

When
$$P=\Psi_{(E,m)}$$
 of degree $n\geq \frac{m^2-m}{2}$, we have $\deg(R_G)=[S_n:G]>[S_n:GL_2(\mathbb{Z}/m\mathbb{Z})]>\frac{\#S_{m^2-m}}{\#GL_2(\mathbb{Z}/m\mathbb{Z})}>\frac{(\frac{m^2-m}{2})!}{\#GL_2(\mathbb{Z}/m\mathbb{Z})}>\frac{2^{\frac{m^2-m}{2}}}{m^4}$. (Hyper-exponential, in practice only $m=2,3,4$ work.)

Another method

Question : When does the Galois group of the field of *I*-torsion differs from its generic value?

Answer : When one of the 4 extensions given below has smaller degree than its generic value.

This is equivalent to testing whether $\Psi_{(E,I)}$ factorizes on \mathbb{Q} or a factor of $\Psi_{(E,I)}$ factorizes on $\mathbb{Q}(x_1)$ or two polynomials of degree 2 factorize on appropriate fields.

Example:

Let $E: y^2=x^3+ax+b$ be a rational elliptic curve. Then $\Psi_3=x^4+2ax^2+4bx-\frac{1}{3}a^2$. We consider a partition of 4 of length 2.

For [2, 2], we write,

$$x^4 + 2ax^2 + 4bx - \frac{1}{3}a^2 = (x^2 + e_2x + e_1)(x^2 + f_2x + f_1)$$

and equate the coefficients on both sides. We get a system of polynomial equations,

$$\begin{cases} e_2 + f_2 = 0 \\ e_2 f_2 + e_1 + f_1 = 2a \\ e_1 f_2 + e_2 f_1 = 4b \\ e_1 f_1 = -1/3 a^2 \end{cases} \Leftrightarrow \begin{cases} f_2 = -e_2 \\ f_1 = 2a + e_2 f_2 - e_1 \\ e_1 \left(e_2^2 + 2 a - e_1 \right) + \frac{1}{3} a^2 = 0. \\ e_2^6 + 4 a e_2^4 + \frac{16}{3} e_2^2 a^2 - 16 b^2 = 0 \end{cases}$$

Thus if $3x^6 + 12ax^4 + 16a^2x^2 - 48b^2$ does not have a rational root, then the factorization pattern of Ψ_3 is not [2,2].

Algorithm

Algorithm 1 (CONDITIONS)

INPUT: $F \in \mathbb{Q}[X]$ and $P \in \mathbb{Q}[X]/F$ of degree n.

OUTPUT: Necessary conditions under which P has a certain factorization pattern on $\mathbb{Q}[X]/F$.

- **1** For every partition of n, create a system of equations as shown in the example.
- Solve it to get polynomial conditions.

Algorithm 2

INPUT: *E* a rational elliptic curve and *l* a prime.

OUTPUT : Necessary conditions under which $\operatorname{Gal}(\mathbb{Q}(E[I]))$ is non-generic.

- **1** For $i \in \{1, 2, 3, 4\}$
- ② $F_i = \mu(K_{i-1})$ (absolute polynomial of K_{i-1} .)
- **3** CONDITIONS (F_i, P_i)

Case I = 3

Theorem

Let $E: y^2 = x^3 + ax + b$ be a rational elliptic curve with $ab \neq 0$. Let Ψ_3 be its 3-division polynomial and Δ its discriminant. Then we have,

Fact. Pattern of Ψ ₃	Condition(s)	$\#G_{E}(3)$
(1,1,2)	C_1 and a 3-torsion point	2
(1,1,2)	\overline{C}_1	4
(1,3)	C_{2i} or $[C_2$ and a 3-torsion point]	6
(1,3)	C_2	12
(2,2)	C_3	8
(4)	C ₄	16

$$\begin{array}{l} C_1 = 27\,x^{12} + 594\,ax^{10} + 972\,bx^9 + 4761\,a^2x^8 + 14256\,abx^7 + \\ \left(17100\,a^3 + 15120\,b^2\right)x^6 + 61992\,a^2bx^5 + 3\,a\,\left(11519\,a^3 + 52704\,b^2\right)x^4 + \\ 432\,b\,\left(293\,a^3 + 972\,b^2\right)x^3 + 486\,a^2\left(59\,a^3 + 312\,b^2\right)x^2 + \\ 324\,ab\,\left(587\,a^3 + 3456\,b^2\right)x - 5329\,a^6 + 162432\,b^2a^3 + 1492992\,b^4 \\ C_{2\prime} = x^{16} - 24bx^{12} + 6\Delta x^8 - 3\Delta^2 \\ C_2 = 3x^4 + 6ax^2 + 12bx - a^2 \\ C_3 = 3x^6 + 12ax^4 + 16a^2x^2 - 48b^2 \\ C_4 = x^3 - 2\Delta \ \textit{i.e. the j of E is a cube.} \end{array}$$

From conditions to families of curves

- Let us assume that a family is given by the condition that $\exists x \in \mathbb{Q}$ such that C(x, a, b) = 0.
- 2 Replace a and b in C by random polynomials in t. We then compute the genus of C(x, t).
- Compute genus g of C.
 - If $g \ge 2$, only finitely many solutions.
 - If g = 0, try to find a rational point and parametrize.
 - If g=1, try to find a rational point and put C in Weierstrass form and compute the rank r.
 - If r = 0, only finitely many points.
 - If r > 0, compute generators.

From conditions to families of curves: Example

Let $E: y^2 = x^3 + ax + b$ be a rational elliptic curve. We saw that if Ψ_3 factorizes into two quadratic factors then $C = 3x^6 + 12ax^4 + 16a^2x^2 - 48b^2$ has a rational root. If we put b = 2a, we get $C = 3x^6 + 12ax^4 + 16a^2x^2 - 192a^2$. This curve is of genus 0 thus we get a parametrization

$$a(t) = \frac{27t^3(19t+2)^3}{(242t^2+54t+3)(271t^2+57t+3)^2}$$
 and $b(t) = 2a(t)$.

Case I = 3

$\mathsf{Theorem}$

Let $E: y^2 = x^3 + ax + b$ be a rational elliptic curve with $ab \neq 0$. Let Ψ_3 be its 3-division polynomial and Δ its discriminant. Then we have,

Fact. Pattern of Ψ ₃	Condition(s)	$\#G_{E}(3)$
(1, 1, 2)	C_1 and a 3-torsion point	2
(1,1,2)	C_1	4
(1,3)	C_{2i} or $[C_2$ and a 3-torsion point]	6
(1,3)	C_2	12
(2,2)	<i>C</i> ₃	8
(4)	C ₄	16

$$C_{1} = 27 x^{12} + 594 ax^{10} + 972 bx^{9} + 4761 a^{2}x^{8} + 14256 abx^{7} + (17100 a^{3} + 15120 b^{2}) x^{6} + 61992 a^{2}bx^{5} + 3 a (11519 a^{3} + 52704 b^{2}) x^{4} + 432 b (293 a^{3} + 972 b^{2}) x^{3} + 486 a^{2} (59 a^{3} + 312 b^{2}) x^{2} + 324 ab (587 a^{3} + 3456 b^{2}) x - 5329 a^{6} + 162432 b^{2}a^{3} + 1492992 b^{4}$$

$$C_{2'} = x^{16} - 24bx^{12} + 6\Delta x^{8} - 3\Delta^{2}$$

$$C_{2} = 3x^{4} + 6ax^{2} + 12bx - a^{2}$$

$$C_{3} = 3x^{6} + 12ax^{4} + 16a^{2}x^{2} - 48b^{2}$$

$$C_{4} = x^{3} - 2\Delta$$

In all the above cases, we obtained g = 0.

Computing the generic valuation of a family

$$\mathsf{Gal}(\mathbb{Q}(t)(E_t[I])/\mathbb{Q}(t)) \stackrel{\mathsf{eval}}{\longrightarrow} \mathsf{Gal}(\mathbb{Q}(E[I])/\mathbb{Q})$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho}$$
 $\mathsf{GL}_2(\mathbb{Z}/I\mathbb{Z}) \stackrel{=}{\longrightarrow} \mathsf{GL}_2(\mathbb{Z}/I\mathbb{Z})$

As the families are constructed to have $\operatorname{Gal}(\mathbb{Q}(t)(E_t[I])/\mathbb{Q}(t)) \subset H$ where H is a subgroup of $\operatorname{GL}_2(\mathbb{Z}/I\mathbb{Z})$, it suffices to find one value of $t \in \mathbb{Q}$ for which $\#\operatorname{Gal}(\mathbb{Q}(E[I])/\mathbb{Q}) = \#H$ to determine $\operatorname{Gal}(\mathbb{Q}(t)(E_t[I])/\mathbb{Q}(t))$.

Valuations I=3

Theorem

Let $E: y^2 = x^3 + ax + b$, $ab \neq 0$ be a rational elliptic curve. Then the generic average valuation $\overline{val}_3(E(\mathbb{F}_p))$ is 0.68, except when one the following cases occurs.

Conditions	A parametrization	Example (a, b)	Valuation
C ₁ and a 3-torsion point	a, b complicated.	(5805, -285714)	2.06
C ₁	a, b complicated.	(284445, 97999902)	1.41
C ₂ and a 3-torsion point	$a = 3t^2, b = -\frac{243t^6 + 162t^4 - 9t^2}{36}$	(3, -11)	1.68
C ₂ ,	$a = \frac{-192 t^3 - 254803968}{t^4}, b = \frac{-t^6 - 5308416 t^3 - 4696546738176}{3t^6}$	$\left(-254804160, -\frac{4696552046593}{3}\right)$	1.68
C ₂	$a = \frac{r^4}{(t^2 + 4t + 1)^2}, b = 2a$	$\left(\frac{-4608}{169}, \frac{-9216}{169}\right)$	1.22
C ₃	$a = \frac{27t^3(19t+2)^3}{(242t^2+54t+3)(271t^2+57t+3)^2}, b = 2a$	$(\frac{250047}{32758739}, \frac{500094}{32758739})$	1.08
C ₄	$a = \frac{216}{(t^3 - 8)}, b = 2a$	$\left(\frac{-216}{7}, \frac{-432}{7}\right)$	0.54

$$\begin{array}{l} C_1 = 27\,x^{12} + 594\,ax^{10} + 972\,bx^9 + 4761\,a^2x^8 + 14256\,abx^7 + \\ \left(17100\,a^3 + 15120\,b^2\right)x^6 + 61992\,a^2bx^5 + 3\,a\,\left(11519\,a^3 + 52704\,b^2\right)x^4 + \\ 432\,b\,\left(293\,a^3 + 972\,b^2\right)x^3 + 486\,a^2\left(59\,a^3 + 312\,b^2\right)x^2 + \\ 324\,ab\,\left(587\,a^3 + 3456\,b^2\right)x - 5329\,a^6 + 162432\,b^2a^3 + 1492992\,b^4 \\ C_{2\prime} = x^{16} - 24bx^{12} + 6\Delta x^8 - 3\Delta^2 \\ C_2 = 3x^4 + 6ax^2 + 12bx - a^2 \\ C_3 = 3x^6 + 12ax^4 + 16a^2x^2 - 48b^2 \\ C_4 = x^3 - 2\Delta \end{array}$$

Cryptographic application

Goal

- **INPUT** : A number field K, a prime I and $a(\alpha, \beta)$ and $b(\alpha, \beta)$.
- OUTPUT: Complete list of equations of negligible density necessary for non-generic valuation.

Popular parametrizations

- Montgomery $By^2 = x^3 + Ax^2 + x$ or $y^2 = x^3 + \frac{3-A^2}{3B^2}x + \frac{2A^3-3A}{27B^3}$
- Edwards $ax^2+y^2=1+dx^2y^2$ or $y^2=x^3+\frac{3-\alpha^2}{3\beta^2}x+\frac{2\alpha^3-3\alpha}{27\beta^3}$ where $\alpha=-2\frac{a+d}{a-d}$ and $\beta=\frac{4}{a-d}$.
- Hessian $y^2 + axy + by = x^3$ or $y^2 = x^3 + (-27a^4 + 648ab)x + (54a^6 1944a^3b + 11664b^2)$.
- etc...

Valuation m = 4, Montgomery curve

Theorem

Let $E: By^2 = x^3 + Ax^2 + x$ be a rational elliptic curve with $B(A^2 - 4) \neq 0$. Then the generic average valuation $\overline{val}_2(E(\mathbb{F}_p))$ is 3.33, except,

• If $A^2-4\neq \square$ i.e. $E(\mathbb{Q})[2]\neq \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}$, we note Ψ be the quartic factor of its 4-division polynomial. Then we have,

Fact. Pat. of Ψ	Condition(s)	$\#G_{E}(4)$	Valuation
(2, 2)	$C_2 (A = -2 \frac{t^4 - 4}{t^4 + 4})$	4	3.40
(4)	$\frac{A\pm 2}{B} = \pm \Box \text{ or } \frac{4B^2}{A^2-4} = -t^4$	8	3.68

$$C_2 = x^4 - 4Ax^3 + (4A^2 + 8)x^2 - 16Ax + 4A^2$$

• If $A^2 - 4 = \Box$ i.e. if $A = \frac{t^2 + 4}{2t}$. Then we have,

Fact. Pat. of Ψ	Condition(s)	$\#G_{E}(4)$	Valuation
(1, 1, 2)	$A = rac{t^4 + 24t^2 + 16}{4(t^2 + 4)t}$ and $B = -t(t^2 + 4)\Box$	2	4.82
(1, 1, 2)	$A = \frac{t^4 + 24t^2 + 16}{4(t^2 + 4)t}$	4	3.91
(2,2)	$A=rac{t^2+4}{2t}$ and $rac{A\pm 2}{B}=\square$	4	4.42
(2,2)	$A = \frac{t^2 + 4}{2t}$	8	3.78

Thank you!