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Motivation - ECM algorithm

Algorithm 1 ECM algorithm

INPUT : n
OUTPUT : a non-trivial factor of n.
1. B+ B,.
2: while No factor is found do
3: E + an elliptic curve on Q and P € E(Q), ord(P)=0c.
Pg < [B!|P = (xg : yg : zg) mod n
g < gcd(zg, n)
if g ¢ {1, n} then return g
end if
end while
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Idea of ECM

Let p be an unknown prime factor of n. If ord(P) in E(F,) divides
B!, then

(xg:yg:2zg)=(0:1:0)mod p.

In this case p divides gcd(zg, n).

Sufficient condition

#E(F,) is B—smooth.

Idea of Montgomery

Lenstra : Prob(#E(F,) is B—smooth)
~ Prob((random integer =~ p is B— smooth).
Montgomery : What if #E(FF,) is even for all primes p?




Motivation - ECM algorithm

Algorithm 2 ECM algorithm + Montgomery

INPUT : n

OUTPUT : a non-trivial factor of n.
1: B+ B,, m+ B!
2: while No factor is found do

3: E < an elliptic curve from a family and P = (x : y : z) €
E(Q). > Ex. higher probability that 2|#E(F),).

4 Pm < [M|P = (Xm : ¥Ym : Zm) mod n
5 g < gcd(zm, n)

6: if g & {1, n} then return g

7 end if

8: end while




Motivation

Montgomery heuristic

| E(F
Larger ZP<B§;‘2(#1 L) means bigger chance of success with
p<B

ECM

| \

Average valuation

We define average valuation of #E(F,) at / using Chebotarev
density as val; = Y~ kProb(val (#E(F,)) = k).

| \

How to change average valuation ?

@ Montgomery : Torsion points over
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Motivation

Montgomery heuristic

| E(F
Larger ZP<B§32(#1 L) means bigger chance of success with
p<B

ECM
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Average valuation

We define average valuation of #E(F,) at / using Chebotarev
density as val; = Y~ kProb(val (#E(F,)) = k).

| \

How to change average valuation ?

@ Montgomery : Torsion points over

@ Brier and Clavier : Torsion points over Q(/)
valo(#E(Fp)) = jvala(#E(Fp)lp = 1(4)) + 3val(#E(Fp) | p = 3(4))

© Barbulescu et al : Better valuation without additional torsion
points (Suyama-11)




Definition (m-torsion field)

Let E be an elliptic curve on Q, m a positive integer. The
m-torsion field Q(E[m]) is defined as the smallest extension of Q
containing all the m-torsion points.

Let us note that G = Gal(Q(E[m])/Q) is always a subgroup of
GLx(Z/mZ).

Theorem (Serre)

@ For all primes | and k > 1, the index
[GLo(Z/1X7Z) : Gal(Q(E[I])/Q)] is non-decreasing and
bounded by a constant depending on E and |.

@ For all primes | outside a finite set depending on E and for all
k > 1, GLa(Z/I1*Z) = Gal(Q(E[I*])/Q).

<




How to change the average valuation ?

Theorem (Barbulescu et al. 2012)

Let | be a prime and E; and E; be two elliptic curves. If
Vn e N, Gal(Q(El[/”])) Y Gal(@(Eg[I”])) then V/(El) = V/(Ez).

Thus in order to change the average valuation,
we must change Gal(Q(E[/"])) for at least one n.
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Constructing the m-torsion field

Definition - Theorem

For an elliptic curve E and a an integer m, we define the
m-division polynomial as

Vg m)(X) = 11 (X — xp) € Q[X].
(xp,£yp)EE[m]-O

210
We have deg(V (g m)) = %23” where n = m%?2.
From now on, we will restrict ourselves to prime torsion.
Given E : y?> = x3 + ax + b and a prime /, we construct :

Q —Q() — Qxi,x) — Q(i,x,y1) — Q(xi,x2,y1,y2)

where the polynomials defining the extensions are;
© (An irreducible factor of) W(g )
@ An irreducible factor of Wg y on Q(x1).
Q fy) =y*— (¢ +ax +b).
Q A(y)=y>— (5 +ax +b).

Q(x1, x2, y1, y2) = Q(E[/]).



Computing Galois groups

Let P be an irreducible polynomial of degree n in K[X] and let
01, ...,0, be its roots in K.

Definition (Resolvent polynomial)

Let F(Xi,...,X,) be a polynomial in K[Xi, ..., X,] and G be a
subgroup of S,, such that

G = {0’ €S, ‘F( o(1)> Xa(n)) = F(Xl, ...,Xn)}. We define the
resolvent polynomial

c(F.P)X)= [I (X —=F(loqys - 00(m))-

0€S,/G

Theorem

| A

Let P be a polynomial of degree n, G a transitive subgroup of S,
and F as above. Then, Rg(F, P)(X) € K[X] and if it has a simple
root in K then Gal(P) C G upto conjugacy.




Computing Galois groups

Example : Let us consider the field K = Q(a, b, ¢, d) and the
polynomial P = X* + aX3 + bX? + cX + d. Let

G = Dg =< (3,4),(1,3)(2,4),(1,4)(2,3) > and

F = XX + X3X;.



Computing Galois groups

Example : Let us consider the field K = Q(a, b, ¢, d) and the
polynomial P = X* + aX3 + bX? + cX + d. Let

G = Dg =< (3,4),(1,3)(2,4),(1,4)(2,3) > and

F = XX + X3X;.

In this case,

RG(F,P) = X3 — (0102 + 60103 + 0104 + 0203 + 0204 + 0304)X? +
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Computing Galois groups

Example : Let us consider the field K = Q(a, b, ¢, d) and the
polynomial P = X* + aX3 + bX? + cX + d. Let

G = Dg =< (3,4),(1,3)(2,4),(1,4)(2,3) > and

F = XX + X3X;.

In this case,

RG(F,P) = X3 — (0102 + 60103 + 0104 + 0203 + 0204 + 0304)X? +
(9%9293 + 9%9294 + 9%9394 + 919%93 + 919%94 + 91929% + 91929[21 +
910§«94 + 010307 + 030304 + 020304 + 020303) X — 030303 — 020307 —
0%0%92 — 9%9592 — 03020304 — 01030304 — 91920394 — 010,60563.

We now apply the fundamental theorem of symmetric polynomials
to get Rg(F, P) = X3 — bX? + (ac — 4d)X — a*d — c? + 4bd.



Computing Galois groups

Let P = X* + bX? + cX + d be an irreducible rational polynomial.
Then we have,
© Gal(P) C Dg if, and only if, X3 — bX? — 4dX — c? + 4bd has
a rational root.
@ Gal(P) C Vu =17Z/27 x Z/2Z if, and only if,
X® — 6bX5 + (13b2 — 24d) X* + (—12b3 + 96bd) X3 + (4b* —
120b%d + 144d?)X? + (48b3d — 288bd?) X + 4b3c? — 16b*d +
27c* — 144bc%d + 272b°d? — 256d3 has a rational root.

When P = W g ) of degree n > ’"22_"’, we have

#smzfm (mzfm)! 2 —m

[mea=im
Lol 272

deg(Rg) = [Sh : G] > [Sn : GLo(Z/mZ)] > #GLz(ZQ/mZ) > #GLZ(ZZ/mZ) > =
(Hyper-exponential, in practice only m = 2, 3,4 work.)
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Another method

Question : When does the Galois group of the field of /-torsion
differs from its generic value ?
Answer : When one of the 4 extensions given below has smaller
degree than its generic value.
Ka = Q(x1, x2, y1,¥2) = Q(E[N])
‘P3:y2—(x23+a><2+b)
Kz = Q(x1, x2, y1)
‘Pg:y2f(xf+ax1+b)

K2 = Q(x1, x2)
‘ P; = a factor of W of degree %
Ki = Q(x)
P-1
‘ Py = W of degree ——=
Q

This is equivalent to testing whether W g ;) factorizes on Q or a
factor of W(g ) factorizes on Q(x1) or two polynomials of degree 2

factorize on appropriate fields.
11/22



Example :

Let E : y =x3+ax+b be a rational elliptic curve. Then
W3 = x* 4 2ax? 4+ 4bx — 1a%. We consider a partition of 4 of
length 2.

e For [2,2], we write,

1
x* +2ax? + 4bx — §a2 = (x2 + eox + el)(x2 + hx + f1)

and equate the coefficients on both sides. We get a system of
polynomial equations,

e+h=0 fr=—

eh+e +f1=2a h=2a+eh—e

eth+efi =4b (ez —1—23—61)-1-%32:

efh =-1/32° e +4aet + 2 e?a® —16b° =0

Thus if 3x% + 12ax?* + 16a%x2 — 48b? does not have a rational
root, then the factorization pattern of W3 is not [2,2].



Algorithm

Algorithm 1 (CONDITIONS)

INPUT : F € Q[X] and P € Q[X]/F of degree n.

OUTPUT : Necessary conditions under which P has a certain
factorization pattern on Q[X]/F.

© For every partition of n, create a system of equations as
shown in the example.

@ Solve it to get polynomial conditions.

Algorithm 2
INPUT : E a rational elliptic curve and / a prime.
OUTPUT : Necessary conditions under which Gal(Q(E[/])) is
non-generic.
Q Foric{1,2,3,4}
@ Fi = p(Ki—1) (absolute polynomial of Ki_;.)
© CONDITIONS(F;, P;)
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Case | =3

Let E : y?> = x3 + ax + b be a rational elliptic curve with ab # 0. Let W3 be its
3-division polynomial and A its discriminant. Then we have,

Fact. Pattern of W3 | Condition(s) #Ge(3)
(1,1,2) C1 and a 3-torsion point 2
(1,1,2) @ p;

(1,3) Cy or [Cy and a 3-torsion point] | 6

(1,3) G 12
(2,2) (&} 8

@) G 16

C1 = 27 x12 4 594 ax10 972 bx9 + 4761 a2x® + 14256 abx’ +
(17100 a3 + 15120 b2) x5 + 61992 a2bx5 + 3 a (11519 a3 + 52704 b2) x* +

432b (293 23+ 972 b2) x3 + 486 22 (59 23 +312 b2) x2 +

324 ab (587 a3 + 3456 b2) x — 5329 25 + 162432 b2a3 + 1492992 b*
Coy = x16 — 24px12 + 6AX8 — 3A2

Cp = 3x* + 6ax2 + 12bx — a2

C3 = 3x% + 12ax* + 16a2x2 — 48b2

Cy = x3 —2A ie thej of E is a cube.
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From conditions to families of curves

@ Let us assume that a family is given by the condition that
dx € Q such that C(x, a, b) = 0.
@ Replace a and b in C by random polynomials in t. We then
compute the genus of C(x, t).
© Compute genus g of C.
e If g > 2, only finitely many solutions.
e If g =0, try to find a rational point and parametrize.

o If g =1, try to find a rational point and put C in Weierstrass
form and compute the rank r.

e If r =0, only finitely many points.
e If r > 0, compute generators.
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From conditions to families of curves : Example

Let £ : y?> = x3 4+ ax + b be a rational elliptic curve. We saw that
if W3 factorizes into two quadratic factors then

C = 3x% 4 12ax* + 16a°x? — 48b2 has a rational root.

If we put b = 2a, we get C = 3x% + 12ax* + 16a°x% — 192a°.
This curve is of genus 0 thus we get a parametrization

27t3(19t + 2)3
(242t2 4 54t + 3)(271t% + 57t + 3)?

a(t) = and b(t) = 2a(t).
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Case | =3

Let E : y?> = x3 + ax + b be a rational elliptic curve with ab # 0. Let V3 be its
3-division polynomial and A its discriminant. Then we have,

Fact. Pattern of W3 | Condition(s) #Ge(3)
(1,1,2) C; and a 3-torsion point 2
(1,1,2) @ p;

(1,3) Gy or [Cy and a 3-torsion point] | 6

(1,3) G 12
(2,2) G 8

(4) Cs 16

C1 = 27 x12 4 594 ax10 972 bx9 + 4761 a2x8 + 14256 abx’ +
(17100 a3 + 15120 b2) x5 + 61992 a2bx5 + 3 a (11519 a3 + 52704 b2) x* +

432b (293 2° + 972 b2) x3 + 486 22 (59 23 +312 b2) x2 +

324 ab (587 a3 + 3456 b2) x — 5329 25 + 162432 b223 + 1492992 b*
Cp = x10 — 24px12  6Ax® — 3A2

Co = 3x* + 6ax2 + 12bx — a2

C3 = 3x° + 12ax* + 16a%x2 — 48b2

Cy = x3 —2A

In all the above cases, we obtained g = 0. 17/22



Computing the generic valuation of a family

Gal(Q(t)(E[1)/Q(t)) —2L Gal(Q(E[N)/Q)

| |

GLy(Z/1Z) ————— GLo(Z/1Z)

As the families are constructed to have Gal(Q(t)(E:[/])/Q(t)) C H
where H is a subgroup of GL2(Z/IZ), it suffices to find one value
of t € Q for which #Gal(Q(E[/])/Q) = #H to determine

Gal(Q(#)(E:[1)/Q(2))-




Valuations | = 3

Let E : y?> = x3 + ax + b, ab # 0 be a rational elliptic curve. Then the generic average

valuation val3(E(F,)) is 0.68, except when one the following cases occurs.

Conditions A parametrization Example (a, b) Valuation
C; and a 3-torsion point | a, b complicated. (5805, —285714) 2.06
G a, b complicated. (284445, 97999902) 1.41
C, and a 3-torsion point | a=3t> b= — 203741627 —0¢% (&, =11) 1.68
Cor 2 — —192¢ —1354803968,b _ —t°—5308416 23t;4696546738176 (254804160, — 459655%046593) 1.68
_ —36¢(t+2) _ —4608 —9216
G a= (@)’ b=2a (=) 1.22
_ 27¢%(19¢+2) 250047 500004
G ~ (242t2+54t43)(271t2+57t+3)2 b=2a (32758739 32758739) 1.08
G a= (tgﬁe) b=2a (2= =1=2) 0.54

C1 = 27 x12 4 594 ax'0 + 972 bx9 + 4761 a2x8 + 14256 abx’ +

(17100 a3 + 15120 b2) x5 + 61992 a2bx5 + 3 a (11519 a3 + 52704 b2) x4 +
432b (293 23+ 972 b2) x3 + 486 22 (59 23 +312 b2) x2 +

324 ab (587 a3 + 3456 b2) x — 5329 25 + 162432 b2a3 + 1492992 b*

Cp = x10 — 24px12 + 6Ax® — 3A2

Cp = 3x* + 6ax2 + 12bx — a2

C3 = 3x% + 12ax* + 16a2x2 — 48b2

Cy = x3 —2A
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Cryptographic application

o INPUT : A number field K, a prime / and a(«, /) and
b(a, B).

@ OUTPUT : Complete list of equations of negligible density
necessary for non-generic valuation.

Popular parametrizations

e Montgomery 8!2 =x3 + Ax? + x or
3
y2 = x3 4 34T, 4 2A%-3A

3B2 27B3
o Edwards ax? + y? = 1 + dx?y? or y? = x3 + 33_5(52" + 2%37?35%
_ +d _ _4
where o = =227 and 3 = =.

o Hessian y? + axy + by = x3 or
y? = x3 4+ (—27a* + 648ab)x + (54a° — 19442%b + 11664b2).

@ etc...




Valuation m = 4, Montgomery curve

Let E : By? = x3 + Ax? + x be a rational elliptic curve with B(A? — 4) # 0. Then the
generic average valuation valy(E(F,)) is 3.33, except,

@ IfA2 —4#£0ie E(Q)[2] # Z/27 x Z./27, we note W be the quartic factor of
its 4-division polynomial. Then we have,

Fact. Pat. of W | Condition(s) #Gg(4) | Valuation
(2,2) G (A=-2572) 4 3.40
(4) AL2 _ o 2B = 4 | 8 3.68

Co = x* — 4Ax3 + (4A% 4 8)x2 — 16Ax + 4A?
© IfFA2—4=Tie if A= 5. Then we have,

Fact. Pat. of W | Condition(s) #Gg(4) | Valuation
1124 %116
(1,1,2) A= % and B=—t(t?+4)0 | 2 4.82
_ 4244416
(1,1,2) A= AGEDE 4 3.91
_ t2+4 A2 _
(2,2) A= - and 222 = 4 4.42
(2,2) A= L+ 8 3.78




Thank you'!

Q>
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