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Notation

Q algebraic closure of Q ;
K ⊂ Q number field ;
d = [K : Q] ;
∆K = Disc(K ) ;
OK integer ring of K ;
E/K elliptic curve ;
EndK (E ) ring of K -endomorphisms of E .

For every prime number p, write

ρE ,p : Gal(Q/K ) −→ Aut(E [p])

the representation giving the action of Gal(Q/K ) on E [p].
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The set Red(E/K )

The following are equivalent :
(i) The representation ρE ,p is reducible ;
(ii) There exist an elliptic curve E ′/K and ϕ : E → E ′ a K -isogeny

of degree p.

Red(E/K )
def
= {p prime satisfying (i) and (ii)}.
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Goal

We have
|Red(E/K )| < +∞⇐⇒ EndK (E ) = Z.

Main goal : When EndK (E ) = Z, explicitly compute the (finite)
set Red(E/K ) from a given Weierstrass equation of E .

Remarks.
1 Mazur (K = Q) :

Red(E/Q) ⊂ {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}.

2 No known generalization of Mazur’s result to degree d > 1.
3 Effective results (depending on E ) of Gaudron-Rémond. Useful

in practice ?
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Useful background on elliptic curves

If E has good reduction at a prime ideal q, put :

Fq = OK/q residual field ;

Ẽ/Fq reduction of E modulo q ;
N(q) = |Fq| norm of q.

Define

aq = N(q) + 1−
∣∣∣Ẽ (Fq)

∣∣∣ and Pq(X ) = X 2 − aqX + N(q).

Hasse : |aq| ≤ 2
√

N(q) or, equivalently,

Pq(X ) = (X − αq)(X − βq) with |αq| = |βq| =
√

N(q).
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General idea

Suppose that E is given by an integral Weierstrass equation of
discriminant ∆E .

For every prime number `, one constructs an integer B` such that

p ∈ Red(E/K ) =⇒ p | 6∆K ·N(∆E ) · B`.

Remarks.
1 We do not assume EndK (E ) = Z, but if EndK (E ) 6= Z, then

B` = 0 for all `.
2 By construction, B` = 0 if ` is ‘bad’, i.e. E has bad reduction

at some prime ideal above `.
3 If B` 6= 0 for some (‘good’) prime `, then we get a bound

on Red(E/K ).
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A monoïd law

The set M = {P ∈ Z[X ] monic such that P(0) 6= 0} equipped with
the law ∗ defined for P,Q ∈ M by

(P ∗ Q)(X ) = ResZ
(
P(Z ),Zdeg(Q)Q

(
X

Z

))
has a monoïd strucutre with identity element Ψ1(X ) = X − 1.

For any integer r ≥ 1 and for any P ∈ M, there exists a unique
polynomial P(r) ∈ M such that

(P ∗Ψr )(X ) = P(r)(X r ), where Ψr (X ) = X r − 1.
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The integers B`

For a good prime ` define

P∗` =∗
q|`

P
(12vq(`))
q ∈ Z[X ] and B` =

b d2 c∏
k=0

P∗` (`12k),

where q runs through the prime ideals above ` and vq(`) denotes
the valuation of `OK at q.

Remarks.
1 If EndK (E ) 6= Z, then B` = 0, for all `.
2 If d is odd, then B` 6= 0, for every good `.
3 There exist K and E/K with EndK (E ) = Z such that B` = 0

for every `, but it is ‘rare’ and in any case (assuming
EndQ(E ) = Z), another similar result applies.
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The algorithm

For any integer n 6= 0, denote by Ω(n) its prime divisors.

1 S1 = Ω (6∆K ·N(∆E )).
2 [initialisation] Search for `0 < (bound1) such that we

have B`0 6= 0. Set B = B`0 .
3 Search for `1, . . . , `m < (bound2) such that we have B`i 6= 0 ;

for i = 1, . . . ,m do

B = gcd(B,B`i ), S2 = Ω(B) and S = S1 ∪ S2
[cleaning]

S ← S \ {p ∈ S ;∃ q good s.t. Pq irreducible mod p}
S1 ← S ∩ S1

4 Determine Red(E/K ) ⊂ S .
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TO DO

1 Certify step 4.

2 Test/compare.
3 Compute equations of the isogenous curves/isogenies.
4 Compute the whole isogeny data (matrix, graph) ; see

ellisomat command.
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