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Q algebraic closure of Q;

K C Q number field;

d=[K:Q];

Ak = Disc(K);

Ok integer ring of K;

E/K elliptic curve;

Endk(E) ring of K-endomorphisms of E.
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Q algebraic closure of Q;

K C Q number field;

d=[K:Q];

Ak = Disc(K);

Ok integer ring of K;

E/K elliptic curve;

Endk(E) ring of K-endomorphisms of E.

For every prime number p, write
pep : Gal(Q/K) —> Aut(E[p])

the representation giving the action of Gal(Q/K) on E[p].
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The set Red(E/K)

The following are equivalent :
(i) The representation pg p, is reducible;

(ii) There exist an elliptic curve E'/K and ¢: E — E’ a K-isogeny
of degree p.
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The set Red(E/K)

The following are equivalent :
(i) The representation pg p, is reducible;

(ii) There exist an elliptic curve E'/K and ¢: E — E’ a K-isogeny
of degree p.

Red(E/K) def {p prime satisfying (i) and (ii)}.
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We have
|Red(E/K)| < 400 <= Endk(E) = Z.
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set Red(E/K) from a given Weierstrass equation of E.

Remarks.

Q@ Mazur (K =Q):
Red(E/Q) C {2,3,5,7,11,13,17, 19, 37, 43, 67, 163).

@ No known generalization of Mazur's result to degree d > 1.

4/10



We have
|Red(E/K)| < 400 <= Endk(E) = Z.

Main goal : When Endg(E) = Z, explicitly compute the (finite)
set Red(E/K) from a given Weierstrass equation of E.

Remarks.

Q@ Mazur (K =Q):
Red(E/Q) C {2,3,5,7,11,13,17, 19, 37, 43, 67, 163).

@ No known generalization of Mazur's result to degree d > 1.

© Effective results (depending on E) of Gaudron-Rémond. Useful
in practice?
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Useful background on elliptic curves

If E has good reduction at a prime ideal q, put :
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Useful background on elliptic curves

If E has good reduction at a prime ideal q, put :
Fq = Ok/q residual field ;
E/FCI reduction of E modulo q;
N(q) = |Fq| norm of q.

Define

aq=N(q)+1— ‘E(Fq)‘ and  Py(X) = X2 — a,X + N(q).

Hasse : |aq| < 24/N(q) or, equivalently,

Pa(X) = (X — aq)(X = Bq)  with [ag| = [Bq] = v/N(q).
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General idea

Suppose that E is given by an integral Weierstrass equation of
discriminant Ag.
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General idea

Suppose that E is given by an integral Weierstrass equation of
discriminant Ag.

For every prime number ¢, one constructs an integer B, such that
p < Red(E/K) = p | 6 Ak - N(AE) - By.
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@ We do not assume Endg(E) = Z,
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General idea

Suppose that E is given by an integral Weierstrass equation of
discriminant Ag.
For every prime number ¢, one constructs an integer B, such that

p < Red(E/K) = p | 6 Ak 'N(AE)' By.

Remarks.
@ We do not assume Endk(E) = Z, but if Endg(E) # Z, then
By, = 0 for all /.

@ By construction, B, = 0 if £ is ‘bad’, i.e. E has bad reduction
at some prime ideal above /.

@ If By # 0 for some (‘good’) prime ¢, then we get a bound
on Red(E/K).
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A monoid law

The set M = {P € Z[X] monic such that P(0) # 0} equipped with
the law x defined for P, @ € M by

(P * Q)(X) = Resz <P(Z)»Zdeg(Q)Q <)Z<>>

has a monoid strucutre with identity element W1(X) = X — 1.
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A monoid law

The set M = {P € Z[X] monic such that P(0) # 0} equipped with
the law x defined for P, @ € M by

(P * Q)(X) = Resz <P(Z),Zdeg(@>o (;))
has a monoid strucutre with identity element W1(X) = X — 1.

For any integer r > 1 and for any P € M, there exists a unique
polynomial P(") € M such that

(P« W,)(X)=P(X"), where W, (X)=X"—1.
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The integers By

For a good prime ¢ define
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The integers By
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4]
Py =% P ¢ Z[x] and B, = ] P;(£*%%),
ke k=0

where g runs through the prime ideals above ¢ and v4(¢) denotes
the valuation of /O at q.
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The integers By

For a good prime ¢ define

4]
Py =% P ¢ Z[x] and B, = ] P;(£*%%),
ke k=0

where g runs through the prime ideals above ¢ and v4(¢) denotes
the valuation of /O at q.

Remarks.
Q If Endk(E) # Z, then By = 0, for all ¢.
Q If d is odd, then By # 0, for every good /.

© There exist K and E/K with Endg(E) = Z such that B, =0
for every ¢, but it is ‘rare’ and in any case (assuming
Endg(E) = Z), another similar result applies.
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The algorithm

For any integer n # 0, denote by Q(n) its prime divisors.
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The algorithm

For any integer n # 0, denote by Q(n) its prime divisors.
Q 51 =Q(6Ak - N(Ag)).
@ [initialisation] Search for {3 < (boundl) such that we
have By, # 0. Set B = By,.
© Search for ¢1,... ¢y < (bound2) such that we have By, # 0;
fori=1,...,mdo
o B=gcd(B,By), $=Q(B) and $§=5US
e [cleaning]
S « S\{peS;3qgoods.t. P, irreducible mod p}
S5« SN

© Determine Red(E/K) C S.
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TO DO

Q Certify step 4.
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Q Certify step 4.
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© Compute equations of the isogenous curves/isogenies.
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TO DO

Q Certify step 4.
@ Test/compare.
© Compute equations of the isogenous curves/isogenies.

© Compute the whole isogeny data (matrix, graph); see
ellisomat command.
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