
[Tutorial] Modular Forms

Henri Cohen

January 16, 2018

Henri Cohen [Tutorial] Modular Forms

Theory I: Modularity

A modular form is a function F from the upper half-plane
H = {τ ∈ C, =(τ) > 0 to C satisfying:

A modularity condition: for all
(

a b
c d

)
∈ SL2(Z) (a, b, c, d in

Z and ad − bc = 1) such that N | c, and for all τ ∈ H we
have

F
(

aτ + b
cτ + d

)
= χ(d)(cτ + d)kF (τ) ,

for some integer k and Dirichlet character χ modulo N.
A holomorphy condition: F is holomorphic on H, and also
at the cusps (no need to define this for now).

The set of all matrices as above is denoted Γ0(N), and the
vector space of all modular forms of the above type is denoted
Mk (Γ0(N), χ). It is trivially 0 if χ(−1) 6= (−1)k . Fundamental
theorem: it is finite dimensional, known dimension.

Henri Cohen [Tutorial] Modular Forms

Theory II: Spaces of Modular Forms

Important subspaces of the full space Mk (Γ0(N), χ) are:

The space of cusp forms Sk (Γ0(N), χ), forms which vanish
at all cusps.
The space of Eisenstein series Ek (Γ0(N), χ): these are
easily explicitly constructed modular forms, and we have

Mk (Γ0(N), χ) = Ek (Γ0(N), χ)⊕ Sk (Γ0(N), χ) .

The space of oldforms Sold
k (Γ0(N), χ), modular forms

constructed from forms of a lower level M with f (χ) | M | N,
M < N (f (χ) conductor of χ).
The space of newforms Snew

k (Γ0(N), χ), defined as a
canonical supplement to the space of oldforms.

Henri Cohen [Tutorial] Modular Forms

Theory III: Modular Forms

Because of modularity, a modular form F is periodic of period
1, and because of holomorphy (meromorphy would suffice) it
has a Fourier expansion

F (τ) =
∑
n∈Z

a(n)e2πinτ ,

the coefficients a(n) being the Fourier coefficients of F .

Because of holomorphy at the cusp i∞, we have a(n) = 0 for
n < 0, so if we set q = e2πiτ , we have F (τ) =

∑
n≥0 a(n)qn.

This is not sufficient in general to ensure holomorphy at all
cusps, but can show that this is equivalent to a(n) = O(nM) for
some fixed M.

Henri Cohen [Tutorial] Modular Forms

Theory IV: Hecke Operators

The last important ingredient of the theory are Hecke operators.
Ad hoc (but correct) definition: if F (τ) =

∑
m≥0 a(m)qm, the

operator T (n) is defined by T (n)(F)(τ) =
∑

m≥0 b(m)qm with

b(m) =
∑

d |gcd(n,m)

χ(d)dk−1a(mn/d2) .

It can be shown that all the above spaces of modular forms are
stable under T (n), and that they form a commuting algebra of
operators, and that if gcd(n,N) = 1, or if we are in the new
space Snew

k (Γ0(N), χ) they are even Hermitian.

In particular they are simultaneously diagonalizable, an
eigenvector for all T (n) is called an eigenform, one proves that
a(1) 6= 0 so eigenforms are normalized by a(1) = 1.

Henri Cohen [Tutorial] Modular Forms

Theory V: Construction of Modular Forms

There are not so many ways to construct modular forms
explicitly.

Eisenstein Series.
Theta functions associated to a lattice and a spherical
polynomial.
Modular forms attached to Hecke characters on imaginary
and real quadratic fields.
Modular forms associated to elliptic curves by Wiles’s
modularity theorem
Trace forms using the Eichler–Selberg trace formula.
Many types of operators enabling to construct new
modular forms from existing ones.

Henri Cohen [Tutorial] Modular Forms

Implementation

Three types of objects:

Modular form spaces, initialized by the command mfinit

with a flag corresponding to one of the five spaces
mentioned above.
Modular forms themselves: if F is such a form,
mfcoefs(F,n) gives the vector of coefficients
[a(0),a(1), ...,a(n)], and mfparams(F) gives [N, k , χ,pol],
level, weight, character, and polynomial in y defining the
field Q(F)/Q(χ).
Dirichlet characters: represented either by a discriminant D
for the Kronecker–Legendre symbol (D/n) (D = 1 trivial
character), by an intmod Mod(a,N) with gcd(a,N) = 1
(Conrey numbering), or by a general Pari/GP group [G, χ].

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Leaves I

D = mfDelta(); V = mfcoefs(D, 8)

Ser(V,q)

% = [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480]

% = q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6

- 16744*q^7 + 84480*q^8 + O(q^9)

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Leaves II

E4 = mfEk(4); E6 = mfEk(6);

apply(x->mfcoefs(x,4),[E4,E6])

E43 = mfpow(E4, 3); E62 = mfpow(E6, 2);

DP = mflinear([E43, E62], [1, -1]/1728);

mfcoefs(DP, 6)

mfisequal(D, DP)

% = [[1, 240, 2160, 6720, 17520],

[1, -504, -16632, -122976, -532728]]

% = [0, 1, -24, 252, -1472, 4830, -6048]

% = 1

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Leaves III

F = mffrometaquo([1,2;11,2]); mfcoefs(F,10)

G = mffromell(ellinit("11a1"))[2];

mfisequal(F, G)

Here mfetaquo represents an eta quotient, here η(τ)2η(11τ)2.
The corresponding modular form is equal to the modular form
associated to the elliptic curve “11a1” of conductor 11.

% = [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2]

% = 1

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces I

mf = mfinit([1,12]); L = mfbasis(mf); #L

mfdim(mf)

mfcoefs(L[1],6)

mfcoefs(L[2],6)

The default is to ask for the full space Mk (Γ0(N), χ) (flag = 4).

% = 2

% = 2

% = [691/65520, 1, 2049, 177148, 4196353, 48828126]

% = [0, 1, -24, 252, -1472, 4830, -6048]

Note: for now, the Eisenstein series are given before the cusp
forms, and they are normalized with a(1) = 1, not a(0) = 1
(which is impossible in general).

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces II

Note the direct command

mfcoefs(mf,6)

which outputs

% =

[691/65520 0]

[1 1]

[2049 -24]

[177148 252]

[4196353 -1472]

[48828126 4830]

[362976252 -6048]

This command is in general much faster than asking for each
individual expansion in the basis.

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces III

The cuspidal space is with flag = 1:

mf = mfinit([1,12], 1); L = mfbasis(mf); #L

mfcoefs(L[1],6)

% = 1

% = [0, 1, -24, 252, -1472, 4830, -6048]

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces IV

The newspace is with flag = 0:

mf = mfinit([35,2], 0); L = mfbasis(mf); #L

for (i = 1, 3, print(mfcoefs(L[i], 10)))

(or more simply mfcoefs(mf,10) which gives a matrix)

% = 3

[0, 3, -1, 0, 3, 1, -8, -1, -9, 1, -1]

[0, -1, 9, -8, -11, -1, 4, 1, 13, 7, 9]

[0, 0, -8, 10, 4, -2, 4, 2, -4, -12, -8]

These are (essentially) random modular cusp forms. Usually,
one wants eigenforms: this is obtained by the command
mfeigenbasis, which applies only to the newspace, even if the
input is larger:

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces V

mffields(mf)

L = mfeigenbasis(mf); #L

mfcoefs(L[1],10)

mfcoefs(L[2],3)

lift(mfcoefs(L[2],9))

% = [y, y^2 - y - 4]

% = 2

% = [0, 1, 0, 1, -2, -1, 0, 1, 0, -2, 0]

% = [Mod(0, y^2 - y - 4), Mod(1, y^2 - y - 4),

Mod(-y, y^2 - y - 4), Mod(y - 1, y^2 - y - 4)]

% = [0, 1, -y, y - 1, y + 2, 1, -4, -1, -y - 4, -y + 2]

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces VI

Very often, need numerical values of coefficients: need to
embed in C, so a given eigenform can give several forms.
Numerical functions applied to modular forms (for example
mfeval, which evaluates numerically a form) automatically give
a vector of results when there are several embeddings.

To compute the numerical expansion of a form having several
embeddings, we use mfembed as follows:

mfcoefsembed(F,n)=mfembed(F,mfcoefs(F,n));

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces VII

We apply to our above example:

[V1,V2]=mfcoefsembed(L[2],5);

V1

V2

% = [0, 1, 1.5615528128088302749107049279870385126,

-2.5615528128088302749107049279870385126,

0.43844718719116972508929507201296148743, 1]

% = [0, 1, -2.5615528128088302749107049279870385126,

1.5615528128088302749107049279870385126,

4.5615528128088302749107049279870385126, 1]

(imaginary parts of 0.E − 38 omitted).

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces VIII

[mf,F,co] = mffromell(ellinit("35a1")); mfcoefs(F, 10)

mfisequal(F, L[1])

% = [0, 1, 0, 1, -2, -1, 0, 1, 0, -2, 0]

% = 1

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces IX

apply(x->mfdim([96, 2], x), [0..4])

% = [2, 9, 7, 15, 24]

mf = mfinit([96,2]); L = mfbasis(mf);

for (i = 12, 15, print(mfcoefs(L[i], 14)))

[23/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28]

[31/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28]

[47/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28]

[95/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28]

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces X

F = mflinear([L[14],L[12]],[1,-1]); mfcoefs(F, 50)

G = mfhecke(mf, F, 24); mfcoefs(G, 11)

mftobasis(mf, G)

24*mfcoefs(L[5], 11)

% = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0]

% = [1, 24, 24, 96, 24, 144, 96, 192, 24, 312, 144, 288]

% = [0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0]~

% = [1, 24, 24, 96, 24, 144, 96, 192, 24, 312, 144, 288]

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Form Spaces XI

mf=mfinit([96,2],0); mffields(mf)

L = mfeigenbasis(mf); for(i=1,2,print(mfcoefs(L[i], 15)))

Fa = mffromell(ellinit("96a1"))[2]; mfcoefs(Fa, 15)

Fb = mffromell(ellinit("96b1"))[2]; mfcoefs(Fb, 15)

mfisequal(mftwist(Fa, -4), Fb)

% = [y, y]

[0, 1, 0, 1, 0, 2, 0, -4, 0, 1, 0, 4, 0, -2, 0, 2]

[0, 1, 0, -1, 0, 2, 0, 4, 0, 1, 0, -4, 0, -2, 0, -2]

% = [0, 1, 0, 1, 0, 2, 0, -4, 0, 1, 0, 4, 0, -2, 0, 2]

% = [0, 1, 0, -1, 0, 2, 0, 4, 0, 1, 0, -4, 0, -2, 0, -2]

% = 1

Henri Cohen [Tutorial] Modular Forms

Practice: Spaces with Characters I

mf = mfinit([35,2,5],0); mffields(mf)

F = mfeigenbasis(mf)[1]; lift(mfcoefs(F, 10))

% = [y^2 + 1]

% = [0, 1, 2*y, -y, -2, -y - 2, 2, -y, 0, 2, -4*y + 2]

Because mffields gives y2 + 1, in the last output y is equal to
one of the two roots of y2 + 1 = 0.

Henri Cohen [Tutorial] Modular Forms

Practice: Spaces with Characters II

mf = mfinit([23,1,-23], 0); mfdim(mf)

F = mfbasis(mf)[1]; mfcoefs(F, 15)

mfgaloistype(mf,F)

mfgaloistype asks for the image in PSL2(C) of the projective
representation associated to the form, here D3, the dihedral
group with 6 elements (also equal to the symmetric group on 3
letters).

% = 1

% = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0]

% = 6

Henri Cohen [Tutorial] Modular Forms

Practice: Spaces with Characters III

Since the form is of type D3, hence dihedral, it can be obtained
by theta functions. The command mffromqf does what is
required:

F1 = mffromqf([2,1;1,12])[2]; V1 = mfcoefs(F1, 15)

F2 = mffromqf([4,1;1,6])[2]; V2 = mfcoefs(F2, 15)

(V1 - V2)/2

mfisequal(F, mflinear([F1, F2], [1, -1]/2))

% = [1, 2, 0, 0, 2, 0, 4, 0, 4, 2, 0, 0, 4, 0, 0, 0]

% = [1, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 0, 4, 2, 0, 0]

% = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0]

% = 1

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Forms of Weight One I

Note that when we wrote mf=mfinit([23,1,-23], 0), we
knew that the character to choose is (−23/n). What if we
don’t? This is especially important for weight 1 modular forms.

G = znstar(23, 1);

L = [[G,chi]|chi<-chargalois(G),zncharisodd(G,chi)]; #L

apply(x->mfdim([23,1,x], 1), L)

apply(x->charorder(x[1],x[2]), L)

The above shows the most general way to define a Dirichlet
character: first define the group G using znstar(N,1) (flag 1
necessary), then specify chi on generators, e.g., using
chargalois or otherwise.

% = 2

% = [0, 1]

% = [22, 2]

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Forms of Weight One II

mfa = mfinit([23,1,0], 1); #mfa

mf = mfa[1]; mfdim(mf)

mfparams(mf)

This illustrates wildcards: the 0 (which is of course not limited to
weight 1) means that the result is a vector of mf of all spaces
with given level and weight, but varying character (here,
mfparams says that the only one is (−23/n)).

% = 1

% = 1

% = [23, 1, -23, 1]

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Forms of Weight One III

wt1exp(lim1,lim2)=

{
my(mfall,mf,chi);

for(N=lim1,lim2,

mfall=mfinit([N,1,0], 0); /* Use wildcard */

for(i=1,#mfall,

mf=mfall[i];

chi=mfparams(mf)[3]; /* nice format: D or Mod(a,N) */

[print([N,chi,-t]) | t<-mfgaloistype(mf), t < 0]

)

);

}

Henri Cohen [Tutorial] Modular Forms

Practice: Modular Forms of Weight One IV

Copy the preceding program from the GP file available with the
tutorial on the website: it explores “exotic” weight 1 forms
between given levels, i.e., those whose projective image is not
dihedral, so cannot easily be constructed explicitly (image A4
code −12, S4 code −24, A5 code −60, opposite of their
cardinality).

For instance, try w1exp(1,230), or w1exp(633,633). The latter
outputs

[633, Mod(71, 633), 2, 10, 60]

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands I

mf=mfinit([96,6],0); mffields(mf)

mfatkineigenvalues(mf,3)

mf=mfinit([96,3,-3],0); mffields(mf)

mfatkineigenvalues(mf,32)

mfatkineigenvalues(mf,3)

% = [y, y, y, y, y, y, y^2 - 31, y^2 - 31]

% = [[-1], [-1], [-1], [1], [1], [1], [-1, -1], [1, 1]]

% = [y^4 + 8*y^2 + 9, y^4 + 4*y^2 + 1]

% = [[I, -I, -I, I], [-I, I, I, -I]]

% = [[0.47....]] /* complicated complex numbers */

The reason we obtain complicated complex numbers in the last
command is that the character (−3/.) is not defined modulo
N/Q = 96/3 = 32. These numbers, called
pseudo-eigenvalues, are algebraic and of modulus 1.

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands II

mf = mfinit([96,2]); L = mfbasis(mf);

mfdim([96,2],3)

apply(x->mfconductor(mf,x), L)

% = 15

% = [16, 32, 48, 96, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96,

24, 48, 96, 32, 96, 48, 96, 96, 96]

Since the dimension of the Eisenstein space (code 3) is 15, this
gives the conductors (lowest possible level) of the 15 Eisenstein
series, then those of the 9 cusp forms in the given basis of mf.

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands III

C = mfcusps(108)

apply(x->mfcuspwidth(108,x), C)

NK = [108,3,-4];

apply(x->mfcuspisregular(NK,x), C)

[c | c<-C, !mfcuspisregular(NK,c)]

% = [0, 1/2, 1/3, 2/3, 1/4, 1/6, 5/6, 1/9, 2/9, 1/12,

5/12, 1/18, 5/18, 1/27, 1/36, 5/36, 1/54, 1/108]

% = [108, 27, 12, 12, 27, 3, 3, 4, 4, 3,

3, 1, 1, 4, 1, 1, 1, 1]

% = [1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1]

% = [1/2, 1/6, 5/6, 1/18, 5/18, 1/54]

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands IV

E4 = mfEk(4); G = mfderivE2(E4); mfcoefs(G, 6)

mfcoefs(mfEk(6), 6)/(-3)

F = mfderivE2(E4, 3); (-9)*mfcoefs(F, 5)

mfisequal(mfEk(10), mflinear([F],[-9]))

% = [-1/3, 168, 5544, 40992, 177576, 525168, 1352736]

% = [-1/3, 168, 5544, 40992, 177576, 525168, 1352736]

% = [1, -264, -135432, -5196576, -69341448, -515625264]

% = 1

E4 = mfEk(4); mfeval(mfinit(E4),E4,I)

3*gamma(1/4)^8/(2*Pi)^6

% = 1.4557628922687093224624220035988692874

% = 1.4557628922687093224624220035988692874

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands V

mf = mfinit([96,4], 0); M = mfheckemat(mf, 7)

% =

[0 0 0 372 696 0]

[0 0 36 0 0 -96]

[0 27/5 0 -276/5 -276/5 0]

[1 0 -12 0 0 62]

[0 0 1 0 0 -16]

[0 -3/5 0 14/5 -16/5 0]

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands VI

P = charpoly(M)

print(factor(P))

% = x^6 - 1456*x^4 + 209664*x^2 - 2985984

[x - 36, 1; x - 12, 1; x - 4, 1; x + 4, 1;

x + 12, 1; x + 36, 1]

Note that this shows that all the eigenvalues of T (7) are
integral, so the splitting will be entirely rational and the
eigenforms with integral coefficients. Let’s check:

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands VII

mffields(mf)

L = mfeigenbasis(mf); for(i=1,6,print(mfcoefs(L[i],15)))

% = [y, y, y, y, y, y]

[0, 1, 0, 3, 0, 10, 0, 4, 0, 9, 0, -20, 0, 70, 0, 30]

[0, 1, 0, 3, 0, 2, 0, 12, 0, 9, 0, 60, 0, -42, 0, 6]

[0, 1, 0, 3, 0, -14, 0, -36, 0, 9, 0, -36, 0, 54, 0, -42]

[0, 1, 0, -3, 0, 10, 0, -4, 0, 9, 0, 20, 0, 70, 0, -30]

[0, 1, 0, -3, 0, 2, 0, -12, 0, 9, 0, -60, 0, -42, 0, -6]

[0, 1, 0, -3, 0, -14, 0, 36, 0, 9, 0, 36, 0, 54, 0, 42]

Note again the twisting phenomenon: there are three
eigenforms, and three twists by the character (−4/n).

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands VIII

[mfB,M,C]=mfatkininit(mf,3); M

% =

[0 -3 0 0 -24 0]

[-1/3 0 -4/3 0 0 -12]

[0 0 0 -9/5 -6/5 0]

[0 0 -2/3 0 0 -1]

[0 0 1/6 0 0 3/2]

[0 0 0 1/5 4/5 0]

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands IX

The matrix of the Atkin–Lehner involution WQ is the above
matrix divided by C, but here C = 1: [C,matdet(M/C)] outputs
[1,−1]. Since the eigenvalues are real in even weight and no
character, this means that there is an odd number of −1, hence
an odd number of +1:

[C,matdet(M/C)]

mfatkineigenvalues(mf,3)

% = [1, -1]

% = [[-1], [-1], [-1], [1], [1], [1]]

Henri Cohen [Tutorial] Modular Forms

Practice: Combination with L-Functions I

E4 = mfEk(4); mf = mfinit(E4); LE = lfunmf(mf, E4);

lfun(LE, 2)/Pi^2

lfun(LE, 0)

D = mfDelta(); mf = mfinit(D); L = lfunmf(mf, D);

lfunlambda(L, 3)/lfunlambda(L, 5)

r = lfunlambda(L, 1)/lfunlambda(L, 3)

bestappr(r)

% = -3.3333333333333333333333333333333333333

% = -1.0000000000000000000000000000000000000

% = 1.5555555555555555555555555555555555556

% = 2.3444283646888567293777134587554269175

% = 1620/691

LIN = lfuninit(L, [50]);

ploth(t = 0, 50, lfunhardy(LIN, t))

Henri Cohen [Tutorial] Modular Forms

Practice: Combination with L-Functions II

Henri Cohen [Tutorial] Modular Forms

Practice: Combination with L-Functions III

PP = mfperiodpol(mf,D,-1); PP /= polcoeff(PP,1);

bestappr(PP)

PM = mfperiodpol(mf,D,1); PM /= polcoeff(PM,0);

bestappr(PM)

mfperiodpolbasis(12)

% = x^9 - 25/4*x^7 + 21/2*x^5 - 25/4*x^3 + x

% = -x^10 + 691/36*x^8 - 691/12*x^6

+ 691/12*x^4 - 691/36*x^2 + 1

% = [x^8 - 3*x^6 + 3*x^4 - x^2,

4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x, x^10 - 1]

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands IX

E4 = mfEk(4); F = mfbracket(E4, E4, 2); mfcoefs(F, 6)/4800

D = mfDelta(); mftaylor(D, 9)*1728

D3 = mftwist(D, -3); mfcoefs(D3, 9)

P = mfparams(D3)

mf = mfinit(D3, 1); mftobasis(mf, D3)

% = [0, 1, -24, 252, -1472, 4830, -6048]

% = [1, 0, -1/12, 0, 1/96, 0, 1/288, 0, -11/2304, 0]

% = [0, 1, 24, 0, -1472, -4830, 0, -16744, -84480, 0]

% = [9, 12, 1, y]

% = [0, 0, 0, 0, 0,

5546/4131, -1232/12393, -47/16524, 11/24786]~

Henri Cohen [Tutorial] Modular Forms

Practice: Miscellaneous Commands X

F = mffromell(ellinit("49a1"))[2]; mfisCM(F)

mfisequal(F, mftwist(F, -7))

mf = mfinit([23,1,-23],1); F = mfeigenbasis(mf)[1];

mfisCM(F)

mfisequal(F, mftwist(F, -23))

% = -7

% = 1

% = -23

% = 0

Henri Cohen [Tutorial] Modular Forms

Practice: Searching: mfeigensearch I

We want to search for normalized eigenforms with integral
(equivalently, rational) Fourier coefficients, given a few a(p) for
p prime, possibly modulo something.

L = mfeigensearch([[1..30],4], [[2,2],[3,-1]]); #L

F = L[1]; mfparams(F)

mfcoefs(F, 10)

% = 1

% = [26, 4, 1, y]

% = [0, 1, 2, -1, 4, 17, -2, -35, 8, -26, 34]

Henri Cohen [Tutorial] Modular Forms

Practice: Searching: mfeigensearch II

L=mfeigensearch([[1..30],4], [[2,Mod(2,5)], [3,Mod(-1,5)]]);

[mfparams(F)[1] | F <- L]

F1 = L[1]; mfcoefs(F1, 10)

F2 = L[2]; mfcoefs(F2, 10)

F = mflinear([F1, F2], [-1, 1]); mfcoefs(F, 14)/5

mfsturm([26,4])

% = [26, 26]

% = [0, 1, 2, -1, 4, 17, -2, -35, 8, -26, 34]

% = [0, 1, 2, 4, 4, -18, 8, 20, 8, -11, -36]

% = [0, 0, 0, 1, 0, -7, 2, 11, 0, 3, -14, -10, 4, 0, 22]

% = 15

Henri Cohen [Tutorial] Modular Forms

Practice: Searching: mfsearch

A more primitive searching is the mfsearch command:

W = mfsearch([[1..35],3],[0,1,2,3,4,5,6,7,8],1);

[mfparams(F) | F <- W]

mfcoefs(W[1],10)

mfcoefs(W[2],10)

% = [[30, 3, -3, y], [30, 3, -15, y]]

% = [0, 1, 2, 3, 4, 5, 6, 7, 8, -14, -30]

% = [0, 1, 2, 3, 4, 5, 6, 7, 8, -21, -50]

We are searching for modular forms with rational coefficients, of
weight 3 and level less than or equal to 35, in the cuspidal
space (code 1) whose Fourier expansion begins with
q + 2q2 + 3q3 + 4q4 + 5q5 + 6q6 + 7q7 + 8q8 + · · · . We find
that there are two, both of level 30, one with character (−3/.),
the second (−15/.), and we give 11 coefficients.

Henri Cohen [Tutorial] Modular Forms

Advanced Commands

The Pari/GP modular form package is unique in that it
implements a number of advanced functions on modular forms
not available in other packages:

1 Fourier expansion of F |kγ, and in particular expansion at
any cusp.

2 Numerical computation of Atkin–Lehner
pseudo-eigenvalues.

3 Numerical evaluation of a form near the real axis.
4 Numerical computation of symbols, i.e., integrals over any

path.
5 Numerical computation of general Petersson products.

This is based on the computation of bases of modular form
spaces made of products of Eisenstein series, and of general
expansions of these series. Although more expensive than
previous computations, once the precomputations are done the
rest is essentially immediate. In practice levels up to 500 are
reachable in reasonable weight.

Henri Cohen [Tutorial] Modular Forms

Fourier expansion of F |kγ I

mf = mfinit([32,4],0); F = mfbasis(mf)[1]; mfcoefs(F,10)

mfslashexpansion(mf,F,[0,-1;32,0],10,1,&A);

A

Here we ask for the action of the Fricke involution
τ 7→ −1/(32τ) on F ; the parameter 1 asks the program to
“rationalize” the result, and A will be explained below.

% = [0, 3, 0, 0, 0, 2, 0, 0, 0, 47, 0]

% = [0, 1, 0, 16, 0, 22, 0, 32, 0, -27, 0]

% = [0, 1]

A = [0,1] means that the expansion will be of the form
q0∑

n≥0 a(n)qn/1, here simply
∑

n≥0 a(n)qn. Thus

F |4W32 = q + 16q3 + 22q5 + 32q7 − 27q9 + O(q11) .

Henri Cohen [Tutorial] Modular Forms

Fourier expansion of F |kγ II

mf = mfinit([12,8],0); F = mfbasis(mf)[1];

mfslashexpansion(mf,F,[1,0;2,1],7,0,&A)

A

mfslashexpansion(mf,F,[1,0;2,1],7,1,&A)

% = [0, 0, 0, 0.6666666... + 0.E-38*I, 0,

-3.99999999... + 6.9282032302...*I, 0,

-11.99999999... - 20.7846096908...*I]

% = [0, 3]

% = [0, 0, 0, 2/3, 0, Mod(8*t, t^2 + t + 1),

0, Mod(-24*t - 24, t^2 + t + 1)]

Here A = [0,3] so the expansion is in powers of q1/3 (still with
q0 in front); the first command (parameter 0) gives the
coefficients as complex numbers (whose real part is easy to
recognize), and the last (parameter 1) “rationalizes” the result,
showing that these coefficients seem to be (are in fact) in
Q(exp(2πi/3)).

Henri Cohen [Tutorial] Modular Forms

Fourier expansion of F |kγ III

mf = mfinit([12,7,-4],0); F = mfbasis(mf)[1];

mfslashexpansion(mf,F,[1,0;6,1],5,1,&A)

A

% = [-5/32, 81/32, 21/16, -597/8, 1215/32, 1689/8]

% = [1/2, 1]

Here we have an example with A[1] = 1/2 6= 0: we have

F |7
(

1 0
6 1

)
= q1/2(−5/32+(81/32)q+(21/16)q2−(597/8)q3+· · ·) .

Henri Cohen [Tutorial] Modular Forms

Evaluation of a Form I

mfeval can easily evaluate a form near the real axis:

mf = mfinit([12,4],1); F = mfbasis(mf)[1];

mfeval(mf,F,1/Pi+10^(-6)*I)

mfeval(mf,F,1/Pi+10^(-7)*I)

mfeval(mf,F,1/Pi+10^(-8)*I)

% = -89811.049350396250531782882568405506024

- 58409.940965200894541585402642924371696*I

% = 4.8212468504661113183253396691813292261 E-52

+ 6.7885262281520647908871247541561415340 E-52*I

% = 0

These results are immediate and correct: at height 10−6 the
value is large, at height 10−7 very small (and really of the order
of 10−52 with 30 correct decimals). Of course the value is not
exactly 0 at height 10−8 but cannot be computed with 38
decimals default accuracy (simply increase the accuracy to
57D, the value is of the order of 10−69).

Henri Cohen [Tutorial] Modular Forms

Evaluation of a Form II

Second, it can also evaluate forms at cusps:

T = mfTheta(); mf = mfinit(T); mfeval(mf,T,[0,1/2,1,oo])

% = [1/2 - 1/2*I, 0, 1/2 - 1/2*I, 1]

Warning: the value at a cusp is not the limit as τ tends to the
cusp because of the automorphy factor (cτ + d)−k :

mfeval(mf,T,10^(-8)*I)

% = -7071.0678118654752440084436210484903928

+ 2.407412430484044816 E-35*I

This number is equal to −104
√

2/2.

Henri Cohen [Tutorial] Modular Forms

Periods and Symbols I

If F has weight k ≥ 2 integral, a generalized period is the
polynomial given by the integral

J(F ; s1, s2) =

∫ s2

s1

(X − τ)k−2F (τ) dτ ,

where si are points in the completed upper-half plane. In
particular the coefficients give the integrals of τ jF (τ) for
0 ≤ j ≤ k − 2.
Most important when si are cusps. Necessary precomputation
of symbols (no need for the definition), then other computations
immediate. Also necessary for Petersson products.

Henri Cohen [Tutorial] Modular Forms

Periods and Symbols II

mf = mfinit([35,2],1); F = mfbasis(mf)[1];

FS = mfsymbol(mf,F);

mfsymboleval(FS,[0,oo])

mfsymboleval(FS,[1/2,3/5])

mfsymboleval(FS,[I,2*I])

mfsymboleval(FS,[1/2,I])

% = 0.31404011074188471664161704390256378537*I

% = -0.14296962919184795604253140534195291798

- 0.26199756419561033271653744806924309759*I

% = 0.00088969563028739893631700037491116258378*I

% = -0.61518300331940868645187865843466669894*I

Henri Cohen [Tutorial] Modular Forms

Periods and Symbols III

mf = mfinit([5,4],1); F = mfbasis(mf)[1];

FS = mfsymbol(mf,F);

mfsymboleval(FS,[0,oo])

% = 0.025682886503399670885091327035730701191*I*x^2

+ 0.020865138644297634350206531603632923359*x

- 0.0051365773006799341770182654071461402382*I

Note that mfsymboleval can also be applied to noncuspidal
forms: in case of divergent integrals the result is a rational
function or a polynomial of degree k − 1, which can easily be
interpreted.

Henri Cohen [Tutorial] Modular Forms

Periods and Symbols IV

T4 = mfpow(mfTheta(),4); mf = mfinit(T4);

TS = mfsymbol(mf,T4);

mfsymboleval(TS,[0,oo])

mfsymboleval(TS,[1/2,oo])

mfsymboleval(TS,[1/2,355/226])

% = (1.0000000000000000000000000000000000000*x^2

- 0.88254240061060637358582572847199076393*I*x

- 0.25000000000000000000000000000000000000)/x

% = 1.0000000000000000000000000000000000000*x

+ (-0.50000000000000000000000000000000000000

- 0.44127120030530318679291286423599538197*I)

% = -7.0000000000000000000000000000000000000

First result: rational function degree 2 / degree 1, divergent
integral. Second result: polynomial of degree
1 = k − 1 > k − 2, divergent integral. Third result: polynomial
of degree 0 = k − 2, convergent integral (prove −7).

Henri Cohen [Tutorial] Modular Forms

Periods and Symbols V

There also exist simpler functions mfperiodpol (integral from 0
to∞) and mfperiodpolbasis (only in level 1):

/* timer on */

mf = mfinit([96,6],0); F = mfbasis(mf)[1];

FS = mfsymbol(mf,F);

mfsymboleval(FS,[0,oo]);

mfperiodpol(mf,F);

time = 24 ms.

time = 9,477 ms.

time = 0 ms.

time = 76 ms.

(results on next page).
The mfsymbol computation requires 9.477 seconds, but the
evaluation is instantaneous. If you only need the integral from 0
to∞, as here, no need for symbols, the computation requires
only 0.076 seconds.

Henri Cohen [Tutorial] Modular Forms

Periods and Symbols VI

% = 46.366702389191867463049266055452963967*I*x^4

+ 3.8953700388682004473225316269956194525*x^3

- 0.56826542231980277465186820072941104401*I*x^2

- 0.15489398386891152199982272551206710377*x

+ 0.024487897732315785610377476118978713061*I

% = /* same result */

Henri Cohen [Tutorial] Modular Forms

Petersson Products I

Recall the Petersson product in level N and weight k :

< F ,G >=
1

[Γ : Γ0(N)]

∫
Γ0(N)\H

ykF (τ)G(τ)
dxdy

y2 .

This is available for any two forms, even for non eigenforms or
noncuspidal, as long as the integral converges; it needs the
precomputation of symbols using mfsymbol. As usual, this
precomputation may take some time, but the subsequent ones
are essentially instantaneous.

Henri Cohen [Tutorial] Modular Forms

Petersson Products II

mf = mfinit([96,4],0); [F1,F2] = mfbasis(mf);

FS1 = mfsymbol(mf,F1); FS2 = mfsymbol(mf,F2);

mfpetersson(FS1)

mfpetersson(FS2)

mfpetersson(FS1,FS2)

% = 0.00061471684149817788924091516302517391826

% = 0.0055324515734836010031682364672265652647

% = 1.6262535777977610381 E-40 + 1.2754930021943223828 E-41*I

The mfsymbol computations take each 2.5 seconds, but after
everything is instantaneous. Note that mfpetersson(FS,FS)
can be abbreviated to mfpetersson(FS). Also, even though F1
and F2 are not eigenforms, the last result seem to show that
they are orthogonal: this is true, prove it!

Henri Cohen [Tutorial] Modular Forms

Petersson Products III

Example of noncuspidal Petersson products:

mf12 = mfinit([12,5,-3]);

E1 = mfeisenstein(5,1,-3);

E2 = mfeisenstein(5,-3,1);

cusps = mfcusps(12)

[mfcuspval(mf12,E1,c) | c<-cusps]

[mfcuspval(mf12,E2,c) | c<-cusps]

% = [0, 1/2, 1/3, 1/4, 1/6, 1/12]

% = [0, 0, 1, 0, 1, 1]

% = [1/3, 1/3, 0, 1/3, 0, 0]

mfcuspval computes the valuation of a form at a cusp. The
above results show that at the six cusps of Γ0(12), one of the
two Eisenstein series vanishes, so their Petersson product will
converge.

Henri Cohen [Tutorial] Modular Forms

Petersson Products III

P(mf) = mfpetersson(mfsymbol(mf,E1),mfsymbol(mf,E2));

mf3 = mfinit([3,5,-3]); mf96 = mfinit([96,5,-3]);

P(mf12)

P(mf3);

P(mf96);

time = 149 ms.

% = -1.8848216716468969562647734582232071466 E-5

-1.9057659114817512165 E-43*I

time = 16 ms.

time = 4,412 ms.

Of course, because of the normalizing factor 1/[Γ : Γ0(N)] all
results are the same, but the required time increases very fast
with the level (at least like its square).

Henri Cohen [Tutorial] Modular Forms

Thank you for your attention !

Henri Cohen [Tutorial] Modular Forms

