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Goals

Fix a field K of characteristic 0 (think K = Q).

Consider the curve
C:f(x,y)=0

where f(x,y) € K|x, y] is squarefree.

We would like to
@ Determine the genus of C,
@ Compute Riemann-Roch spaces on C,
@ Construct the Jacobian of C,
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Goals

@ Determine the genus of C,
@ Compute Riemann-Roch spaces on C,
@ Construct the Jacobian of C,

All this actually refers to the desingularisation C— Cof C.

L — X

C C
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Local parametrisations

For each point P = (xp, yp) of C, local parametrisations
x = X(t),y = Y(1)

where X, Y are nonconstant formal power series such that

f(X(t), Y(t)) =0 and X(0) = xp, Y(0) = yp.

We assume X and Y are not both series in t” for any n > 2.

Uniqueness: Hope that Parametrisations at P <+ Points of C
above P. But can rescale t < t' = ct + O(t?), c #0 ...

Existence: OK if P is nonsingular: can Newton w.r.t. x or y.
But what if P is singular?
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Puiseux series

Theorem (Newton—Puiseux)

K{{x}} = Ues1 K((x*/¢)) is algebraically closed.

View f(x, y) = f(x)(y) € KIx]ly] € K((x))y],
meaning we think of y as an algebraic function of x:

C — C—PL.

Let n = deg, f.
Then in K{{x}}, f(x)(y) has roots 7y, --- ,m,
~» For each m; = 3 . a,x"®,

local parametrisation x = t¢, y = >

n
pong Ant"

This yields all points above x = 0.
For the general case, translate / change variables.
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Rationality

Suppose X(t), Y(t) corresponds to P € C.
We would like K(coeffs of X, Y) = the field of definition of P.

/\ Rescalings t < t' = ct + O(t?) typically destroy this!

If P is nonsingular, we can always have either X(t) = xp + t
or Y(t) = yp + t. But what if P is singular?

If X(t) =te, Y(t) = Z ant", can rescale t < (.t (¢S =1)

nzng

- X(t) =18, Y(t) =) an(lt".

n-=ng
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Rational parametrisations

Theorem (Duval)

There exists a g/oba//y Gal( /K)- /nvar/ant set of
parametrisations ( t)) with X = b;t% for each j,
such that the roots of f( )(y) =0in K{{x}} are the

j(Cej s:-/bj—lxl/e,> for Cej = 1. In particular, ZJ. e =n.

Suppose the (X;(t), Y;(t)) for 1 <j < g form a system of
representatives of Galois orbits. For each j, Iet K; be
K (b, coefs of Y;), and f; = [K; : K]. Then > %_ 1ejf = n, and

LI IT 0w,

Jj= 10K‘—>KBJ bJ_

J/

-

irr. factors over K((x))

~
irr. factors over K((x))
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Computing the rational parametrisations

Write f(x)(y) = 3;; ai;¥'y’, and draw the Newton polygon
of the (/,/) in the support of f.

J = deg,

I = deg,

Let pi + qj = r be a segment, with p, g coprime, g > 0. Write

f = Z a;Jiji+ Z a;ijyi.

pi+qj=r pi+qj>r

J/ J/

fb(X7y) H.OT.
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Computing the rational parametrisations

Z a;ijyi+ Z a,',ij)/i

pit+qj=r pi+qj>r
-

S (. >

fo(x.y) HOT.

Puiseux approach: Look for roots of valuation p/q, so
y = bxP/9 + H.O.T. with b € K determined by fo(x,y) =0:

f(x bxp/q Z aj, qu/qb’xp’/q S Z a,-yjb’. = x’/qB(b).
pi+qj=r pi+aqj=r

But as p, g coprime, i = iy + gk, j = jo — pk for k € Z,
so B(b) is actually a polynomial in b9 ~~ g-th roots ~~ bad for
rationality.
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Computing the rational parametrisations

f = Z a;Jiji+ Z a;ijyi.

pi+qj=r pi+qj>r

J/ J/

fb(X7y) H.OT.

Rational approach: p, g coprime ~~ Bézout up + vq = 1.
Look for x = b™4t9, y = b*tP + H.O.T., b€ K . Indeed,

(bt b tP) = > aib tUbtF
pi+qj=r
- Z ai’jbv(io—i—qk)—u(jo—pk) — trbvio—ujo Z ai,jbk — trbvio—UJO B(b)
pi+qj=r pi+qj=r
Solve B(b) =0, plug in x = b™“x{, y = b"x{(1 + y1), and

iterate until the equation is nonsingular in y.
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Practical details

Store and remember the nonsingular equation in y obtained at
the end of the recursion

~ Black box able to give expansions with arbitrary t-adic
accuracy.

read("Algcurves.gp");
B=Branches0(y~3+2*x"3*y-x"7,t,a) [2] [1];
BranchExpand (B, 10)

BranchExpand (B, 100)
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Practical details

Useful ingredient to handle successive algebraic extensions:
AlgExtend : (A, F)— (B, g, a), where

o A(x) € K[x] irr.,

e F(x) € K(a)[x] where A(a) =0,
and

e B(x) € K[x] irr.

e g(x) € K[x]: g(p) root of F(x) where B() =0,

e a(x) € K[x]: a(B) root of A(x).
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Computing the genus

Write again f(x,y) = Zu ai Xy

Theorem (Novocin)

le

The wj; = ~—— dx i,j € N, are holomorphic at the finite

nonsingular pomts. Any holomorphic differential on C is a
linear combination of the w;; for (i,j) strictly in the convex
hull of the support of f(x, y).

~> Strategy: Compute local parametrisations at all the
singular points and at the points at infinity. Plug them into
the w;jj, and use linear algebra over K to find the
combinations whose polar parts vanish.

We get a K-basis of the space of holomorphic differentials.
The genus of the curve is its dimension.
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Integral closure (Preparation for Riemann-Roch)

Let K(C) = Frac K(x)[y]/f(x,y).
The integral closure of K[x] in K(C) is
Oc = {h(x,y) € K(C) | h holomorphic above x # oc}.

Start with the approximation O = ®j<n K[x]y{,
where y; = lc,(f)y.

For all irreducible U(x) € K[x], O is U-maximal unless
U? | disc, f(x, y).

For such U, compute the parametrisations at the points above
U(x) = 0, plug them into the x'y] /U(x) for i < deg U and
J < n, and find linear combinations whose polar parts vanish.

Then join the local bases by performing a HNF over K|[x].
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The GP function CrvInit takes f(x, y) and computes the
rational parametrisations above the points P such that
x(P) = oo or x(P) is a multiple root of A(x) or P is singular.

C:

CrvInit (y~3+2*x"3*xy-x"7) ;

CrvPrint (C);

C1=CrvInit(-256*x~56 + 6144xx"55 - 62464xx"54

+
+
+
+

+

333824*x753 - 8b59648*x752 - 120832*x"51
7252992*xx750 - 16046080*x~49 - 9891072*xx"48
90136576*x"47 - 73076736*x"46 - 237805568*x"45
420485120*x744 + 341843968+*x"43 - 1165840384*x~42
192667648*xx"41 + 2178936320*x"40 - 238563328*x~39

3232%y~6*x"6 + 384*xy~6*x"5

-96*y 6*x"4 - 16%y~6*%x"3 + 27%y"8);
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Application: Weierstrass form

C:y3+2x3y — x” =0 has genus g = 2, so it is hyperelliptic
~ has model H : w? = F(u).

QN(H) = (9, uduy ., our basis of QY(C) is (2etD)dv  (cutd)du

W +b w
. W
~» Their quotient is 2--7.

CL71 \\ yx/(2x"3+3y~2) dx, x"3/(2x"3+3y"2) dx
u = C[7][1]1[1]1/C7]1[1]1[2]

W= X

factor (MorImg(y~3+2*x~3*y-x"7,u,w))
poldisc(%[2,1],y)

DivPrint (FnDiv(C,u-2/3))
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Let D =>" n,;’l5 formal Z-linear combination of points of C.
The attached Riemann-Roch space is

L(D) = {h e K(C) | ords h > —nj for all P}.
This is a finite-dimensional K-vector space. We want a basis.

Represent points P € C either as nonsingular points P € C, or
as local parametrisations.

Strategy:
e Find d(x) € K[x] such that
h(x,y) € L(D) = d(x)h(x,y) € Oc.
@ Use local parametrisations to find combinations vanishing
at appropriate order at relevant points.
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Riemann-Roch : Example

CrvPrint (C)

RiemannRoch(C, [2,5])
L=RiemannRoch(C, [[-1,1],3;3,1;1,-2])
DivPrint (FnDiv(C,L[1]))
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Riemann-Roch : Applications

We put a genus 1 curve in Weierstrass form:

Cl = CrvInit((x+y+1/x+1/y+1)*x*y);
CrvPrint (C1)
CrvE1l1l(C1,[1,0,0])

We find a rational parametrisation of a curve of genus 0:

f = x"5+y 4+x"2xy"3;

CO = CrvInit(f);
CrvPrint (CO)

[X,Y] = CrvRat(CO,1)
substvec(f, [x,y], [X,Y])
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Jacobians and Galois representations

With Riemann-Roch spaces, we can construct a Makdisi
model of the Jacobian J of C.

At the moment, only implemented for models of J over Z,/p®,
where g = p? with p a prime of good reduction, Z, is the ring
of integers of the unramified extension of QQ, of degree d, and
e € N is arbitrary.

But no difficulty for models of J over number fields.

p-adic models of J can be used to compute Galois
representations occurring in the torsion of J.

C=CrvInit(x"5 + y~5 - 6%x"3 + 6%x"2 + x*y - 3*y~2);
CrvPrint (C)

CrvPicTorsGalRep(C,2,13,700)

Nicolas Mascot Algebraic curves



Thank you!




