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Birth date: 24/11/1986
Test date: 06/01/2022

Your coronavirus PCR test (or other lab test) result is positive. It's
likely you had the virus when the test was done.

Self-isolate immediately (including if this is a follow-up test result)
from the day your symptoms started, or the test date if you've no
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last-minute bookings, but then | received this ...

NHS!

Dear Barinder Banwait
Birth date: 24/11/1986
Test date: 06/01/2022

Your coronavirus PCR test (or other lab test) result is positive. It's
likely you had the virus when the test was done.

Self-isolate immediately (including if this is a follow-up test result)
from the day your symptoms started, or the test date if you've no
symptoms.

Fortunately it has been mostly mild.
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Rational Isogenies

Let E1, E Ee two elliptic curves over a number field K. Write
Gk = Gal(K/K).

Definition

® An isogeny ¢ : E; — E is a non-constant morphism of curves which
© maps Og, to Okg,; - -
< induces a group homomorphism from E;(K) to Ex(K);
< has finite kernel.

® The degree of ¢ = |ker(¢)| = [K(E1) : 9*K(E2)].
® ¢ is K-rational if it is compatible with the Gk-action on E; and E;;
that is, if the following diagram commutes for all o € Gk:

E1L>E2

al la

E1L>E2

Equivalently, ¢ is K-rational if ker(¢) is Gk-stable.

® ¢ is said to be cyclic if ker(¢) is a cyclic group.
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Isogeny classes are finite over number fields

Theorem (Shafarevich, 1962)

Let E/K be an elliptic curve over a number field. Then there are only
finitely many elliptic curves E' /K which are K-isogenous to E.

N

Every isogeny is the composition of a cyclic isogeny with the
multiplication-by-m map for some m > 1.

.

So between any two elliptic curves in the isogeny class of E, there is a
unique minimal cyclic isogeny degree between them.
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These minimal cyclic isogeny degrees are implemented in PARI/GP as
ellisomat.

? nf = nfinit(a™2 - 2);

? ell = ellinit([a,-1,0,18,46],nT);

? [L,M] = ellisomat(ell);

125 ms, real time = 163 ms.
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These minimal cyclic isogeny degrees are implemented in PARI/GP as
ellisomat.

? nf = nfinit(a™2 - 2);

? ell = ellinit([a,-1,0,18,46],nT);

? [L,M] = ellisomat(ell);
i 125 ms, real time = 163 ms.

12, 12, 12, 12]-

The degree computation is based on Billerey's algorithm for computing
isogenies of prime degree for a fixed elliptic curve E/K.

Nicolas Billerey
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Uniform isogeny primes?

Definition
For a number field K, a prime p is called an isogeny prime for K if

there exists an elliptic curve over K which admits a K-rational p-isogeny.
We write the set of such primes as IsogPrimeDeg(K).

By the theory of CM, IsogPrimeDeg(K) is infinite if K contains the
Hilbert class field of an imaginary quadratic field.

Theorem (Mazur, 1978)

IsogPrimeDeg(Q) = {2,3,5,7,11,13,17,19,37,43,67,163}

Barry C. Mazur
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Theorem (Momose + Merel, 1995)

Assume GRH. Then IsogPrimeDeg(K) is finite if and only if K does not
contain the Hilbert class field of an imaginary quadratic field.

Fumiyuki Momose Loic Merel
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Computing IsogPrimeDeg(K)?

Theorem (B.-Derickx)

Let K be a number field which does not contain the Hilbert class field of
an imaginary quadratic field. Then there is an algorithm which computes
a superset of IsogPrimeDeg(K) as the union of three sets:

IsogPrimeDeg(K) C PreTypeOneTwoPrimes(K) U TypeOnePrimes(K)
U TypeTwoPrimes(K).

4

With Maarten Denckx in West London last week
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Isogeny types

Let E/K be an elliptic curve over a number field which admits a
K-rational p-isogeny. Let A\ denote the isogeny character:

A Gk — AutV(K) =T,

where V is the kernel of the isogeny, which can be thought of as a 1d
Gk-representation.

Theorem (Momose, watered-down)

Let K be a number field which does not contain the HCF of an IQF.
Then there exists a constant Co = Co(K) such that for any prime

p > Co, and for any elliptic curve admitting a K-rational p-isogeny, the
isogeny character \ falls into one of the following two types:

Type 1. A2 or (M, )2 is unramified (6, =mod-p cyclotomic character).
Type 2. A2 =68 and p = 3 (mod 4).
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coprime to p.
LEMMA 1. Assume that k is a Galois extension of Q and that the rational

prime p is unramified in k. Then for a fixed prime p of k lying over p, we have
integers a,, 0 < a, < 12, for o€ Gal(k/Q) such that

A((@) =« (modp)

for e =%_a,0 and aek™ prime to p.
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These two special types of A arise from the following Lemma. By class
field theory, we can identify A as a character of Ix(p), ideals of K
coprime to p.

LEMMA 1. Assume that k is a Galois extension of Q and that the rational
prime p is unramified in k. Then for a fixed prime p of k lying over p, we have
integers a,, 0 < a, < 12, for o€ Gal(k/Q) such that

(@) =« (modp)
for e =%_a,0 and aek™ prime to p.

We show that the same result holds in the non-Galois setting, by

replacing Gal(K/Q) with Hom(K, K¢), where K¢ is the Galois closure of
K.

By fixing an ordering of the embeddings in ¥ := Hom(K, K¢), we can
think of ¢ as a tuple (a,)scs, called the isogeny signature.
REMARK 1. The integers ay’s take the values 0, 12;4,8 (only if the modular

invariant j(E) = 0 (mod p) and p = 2 (mod 3)); 6 (only if j(E) = 1728 (mod p)
and p = 3 (mod 4) (cf. [Mal], Chap. 3; [Ma2]).
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We obtain the following picture for the reduction modulo p of Xy(N):

&)l

< >

Z=X,(N')&F, Z'=X,(N')®F,

E,
. these are present

!
ézu \ if and only if #=1

F,

G I

-

these are present

these present g {
S if and only if »=1

< U=1

| For Gy

From Mazur and Rapoport’s Appendix to Mazur's 1977 paper. The E components arise from j = 1728
elliptic curves, the F and G from j = 0.
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A of Type 1 means e = (0,---,0) or (12,---,12)
A of Type 2 means e = (6,---,6)
For the other signatures € one can construct a non-zero integer

ABC (e, q) (for prime ideals q of K) which multiplicatively bounds the
isogeny primes with that signature.
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TypeOnePrimes

Let E/K be an elliptic curve with a K-rational p-isogeny of Type 1.
Replacing this isogeny with its dual if necessary, we may suppose that
A2k =1 ie., e=(0,---,0).
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A2k =1 ie., e=(0,---,0).

Case 1. E has potentially good reduction at g.

Then A(Froby) = 3 for some root 3 of the characteristic polynomial of
Frobenius of an elliptic curve over F,,.
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TypeOnePrimes

Let E/K be an elliptic curve with a K-rational p-isogeny of Type 1.
Replacing this isogeny with its dual if necessary, we may suppose that
A2k =1 ie., e=(0,---,0).

Case 1. E has potentially good reduction at g.

Then A(Froby) = 3 for some root 3 of the characteristic polynomial of
Frobenius of an elliptic curve over F,,.

P| Nm(ﬁuhq _ 1)

i.e. we can multiplicatively bound this case.
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Case 2. E has potentially multiplicative reduction at q.
Writing x for the non-cuspidal K-point on Xp(p) corresponding to E, we
have that

X/Fq = X/F, OF O/Fq
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Case 2. E has potentially multiplicative reduction at q.
Writing x for the non-cuspidal K-point on Xp(p) corresponding to E, we
have that

X/Fq = X/F, OF O/Fq

One then proves in each case that

M(Frobg) = 1 or Nm(q)?.
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Case 2. E has potentially multiplicative reduction at q.
Writing x for the non-cuspidal K-point on Xp(p) corresponding to E, we
have that

X/Fq = X/F, OF O/Fq

One then proves in each case that
M(Frobg) = 1 or Nm(q)?.
The latter case yields

1 = A'?M(Froby) = Nm(q)*2" (mod p)
= p | Nm(q)™" — 1.



Introduction Isogeny Primes v1 A cubic example Questions

[e]e]e]e]e]e]e] Jelele]e]e]

Case 2. E has potentially multiplicative reduction at q.
Writing x for the non-cuspidal K-point on Xp(p) corresponding to E, we
have that

X/Fq = X/F, OF O/Fq

One then proves in each case that
M(Frobg) = 1 or Nm(q)?.
The latter case yields

1 = A'?M(Froby) = Nm(q)*2" (mod p)
= p | Nm(q)™" — 1.

In the first case: if any of the embedded points x“ specializes to 0,
then we again get a non-zero multiplicative bound.
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Problem Case

The Q-rational point (x7),ex on the d-th symmetric power modular
curve Xo(p)@ specializes to (oo, - - - ,00) at g.
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Problem Case

The Q-rational point (x7),ex on the d-th symmetric power modular
curve Xo(p)@ specializes to (oo, - - - ,00) at g.

Define the map

9 X)) ) — dp)z — I

D +—=[D—d(0)] — [D — d(0)] (mod v3Jo(p))

By an analogue of Mazur’s specialization lemma, we obtain that
f(x7) = f(o0,- -, 00).
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We have, lherefore, the following state of affairs: the two @-sections of X ,(N),
x,o and o0, “cross” at p, and map to the same section of 4 under fj, (the zero-
section). But this contradicts the fact that f is a formal immersion at e, ;.

®
¥ x
XO(N),'@
Spec ¢ -
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We have, lherefore, the following state of affairs: the two @-sections of X ,(N),
x,o and o0, “cross” at p, and map to the same section of 4 under fj, (the zero-
section). But this contradicts the fact that f is a formal immersion at e, ;.

®
g x
XO(N),'@
Spec ¢ -
p
We conclude that f is not a formal immersion at (oo, - - - , 00).

The set of such ps is very small and can be explicitly bounded.
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Proposition 5.3. Let H C (Z/pZ)*/{+1} be a subgroup. Let € # p be a prime and
consider t = t(t,) as in Proposition 5.1 when { is oddV, or t as in Corollary 5.2 when
€ = 2. Then tois a formal immersion at all X, € X‘;'(I‘i] that are sums of images of
rational cusps on X,(p), if for all partitions d = ny +... +n, withn, > --- > n,, and
all m-tuples (d; = 1,dy, ..., dy) of integers representing pairwise distinct elements of H,
the d Hecke operators

(5.1

Maarten Derickx Sheldon Kamienny William Stein Michael Stoll



Isogeny Primes v1
0000000000080

prime_range(11)]

prime_range(1l, 2 *

rmall_immer
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TypeTwoPrimes

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a
K-rational p-isogeny of Type 2.
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Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a
K -rational p-isogeny of Type 2. Let q be a rational prime admitting a
prime ideal q | q of residue degree f satisfying:

Q f is odd:

Q@ ¢ <p/4

© ¢* + 9" +1#0 (mod p).
Then q does not split in Q(\/—p).
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TypeTwoPrimes

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a
K -rational p-isogeny of Type 2. Let q be a rational prime admitting a
prime ideal q | q of residue degree f satisfying:

Q f is odd:

0 ¢ <p/4

Q ¢* +4F +1#0 (mod p).
Then q does not split in Q(\/—p).

Proposition (B.-Derickx)

Assume GRH. Let K be a number field of degree d, and E/K an elliptic
curve possessing a K-rational p-isogeny, for p a Type 2 prime. Then p
satisfies

p < (8dlog(12p) + 16 log(Ak) + 10d + 6)*.

In particular, there are only finitely many primes p as above.
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From Superset to Set

Let's run the algorithm on Q((7)™; we get a superset of

PrimesUpTo(43) U {67,73,163} .

How to determine which of these are actually in IsogPrimeDeg(Q(¢7)™)?
The main ingredient is

Theorem (Box-Gajovi¢-Goodman, 2021)

For N € {53,57,61, 65,67, 73}, the set of cubic points on Xo(N) is finite
and listed in Section 5 of [?].

Josha Box Stevan Gajovi¢ Pip Goodman
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The first cubic case of IsogPrimeDeg

Theorem (B.-Derickx)
Assuming GRH,

IsogPrimeDeg(Q(¢7) ") = IsogPrimeDeg(Q)







Can Isogeny Primes v2 be implemented in PARI/GP? \

How can checking Type 2 primes be made much faster? I
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