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I was really looking forward to being there in person this week ...

... but France had closed its border to people from the UK unless they
had a “motifs impérieux” for travel, and

Ces motifs ne permettront pas de se déplacer pour raisons touris-
tiques ou professionnelles
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This did get relaxed on 6th January, so I could have travelled with
last-minute bookings, but then I received this ...

Fortunately it has been mostly mild.
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Rational Isogenies

Let E1, E2 be two elliptic curves over a number field K . Write
GK := Gal(K/K ).

Definition
• An isogeny ϕ : E1 → E2 is a non-constant morphism of curves which

⊚ maps OE1 to OE2 ;
⇔ induces a group homomorphism from E1(K) to E2(K);
⇔ has finite kernel.

• The degree of ϕ = | ker(ϕ)| = [K (E1) : ϕ
∗K (E2)].

• ϕ is K -rational if it is compatible with the GK -action on E1 and E2;
that is, if the following diagram commutes for all σ ∈ GK :

E1 E2

E1 E2

ϕ

σ σ

ϕ

Equivalently, ϕ is K -rational if ker(ϕ) is GK -stable.
• ϕ is said to be cyclic if ker(ϕ) is a cyclic group.
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Isogeny classes are finite over number fields

Theorem (Shafarevich, 1962)

Let E/K be an elliptic curve over a number field. Then there are only
finitely many elliptic curves E ′/K which are K -isogenous to E .

Fact
Every isogeny is the composition of a cyclic isogeny with the
multiplication-by-m map for some m ≥ 1.

So between any two elliptic curves in the isogeny class of E , there is a
unique minimal cyclic isogeny degree between them.
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These minimal cyclic isogeny degrees are implemented in PARI/GP as
ellisomat.

The degree computation is based on Billerey’s algorithm for computing
isogenies of prime degree for a fixed elliptic curve E/K .

Nicolas Billerey
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Uniform isogeny primes?

Definition
For a number field K , a prime p is called an isogeny prime for K if
there exists an elliptic curve over K which admits a K -rational p-isogeny.
We write the set of such primes as IsogPrimeDeg(K ).

By the theory of CM, IsogPrimeDeg(K ) is infinite if K contains the
Hilbert class field of an imaginary quadratic field.

Theorem (Mazur, 1978)

IsogPrimeDeg(Q) = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}

Barry C. Mazur
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Theorem (Momose + Merel, 1995)

Assume GRH. Then IsogPrimeDeg(K ) is finite if and only if K does not
contain the Hilbert class field of an imaginary quadratic field.

Fumiyuki Momose Löic Merel
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Isogeny Prime v1
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Computing IsogPrimeDeg(K )?

Theorem (B.-Derickx)

Let K be a number field which does not contain the Hilbert class field of
an imaginary quadratic field. Then there is an algorithm which computes
a superset of IsogPrimeDeg(K ) as the union of three sets:

IsogPrimeDeg(K ) ⊆ PreTypeOneTwoPrimes(K ) ∪ TypeOnePrimes(K )

∪ TypeTwoPrimes(K ).

With Maarten Derickx in West London last week
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Isogeny types

Let E/K be an elliptic curve over a number field which admits a
K -rational p-isogeny.

Let λ denote the isogeny character:

λ : GK −→ AutV (K ) ∼= F×
p ,

where V is the kernel of the isogeny, which can be thought of as a 1d
GK -representation.

Theorem (Momose, watered-down)

Let K be a number field which does not contain the HCF of an IQF.
Then there exists a constant C0 = C0(K ) such that for any prime
p > C0, and for any elliptic curve admitting a K -rational p-isogeny, the
isogeny character λ falls into one of the following two types:
Type 1. λ12 or (λθ−1

p )12 is unramified (θp =mod-p cyclotomic character).

Type 2. λ12 = θ6
p and p ≡ 3 (mod 4).
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These two special types of λ arise from the following Lemma.

By class
field theory, we can identify λ as a character of IK (p), ideals of K
coprime to p.

We show that the same result holds in the non-Galois setting, by
replacing Gal(K/Q) with Hom(K ,K g ), where K g is the Galois closure of
K .

By fixing an ordering of the embeddings in Σ := Hom(K ,K g ), we can
think of ε as a tuple (aσ)σ∈Σ, called the isogeny signature.
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From Mazur and Rapoport’s Appendix to Mazur’s 1977 paper. The E components arise from j = 1728
elliptic curves, the F and G from j = 0.
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λ of Type 1 means ε = (0, · · · , 0) or (12, · · · , 12)

λ of Type 2 means ε = (6, · · · , 6)

For the other signatures ε one can construct a non-zero integer
ABC (ε, q) (for prime ideals q of K ) which multiplicatively bounds the
isogeny primes with that signature.
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TypeOnePrimes

Let E/K be an elliptic curve with a K -rational p-isogeny of Type 1.
Replacing this isogeny with its dual if necessary, we may suppose that
λ12hK = 1, i.e., ϵ = (0, · · · , 0).

Case 1. E has potentially good reduction at q.
Then λ(Frobq) ≡ β for some root β of the characteristic polynomial of
Frobenius of an elliptic curve over Fq.

p|Nm(β12hq − 1)

i.e. we can multiplicatively bound this case.
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Case 2. E has potentially multiplicative reduction at q.

Writing x for the non-cuspidal K -point on X0(p) corresponding to E , we
have that

x/Fq
= ∞/Fq

or 0/Fq
.

One then proves in each case that

λ2(Frobq) ≡ 1 or Nm(q)2.

The latter case yields

1 = λ12hq(Frobq) ≡ Nm(q)12hq (mod p)

⇒ p | Nm(q)12hq − 1.

In the first case: if any of the embedded points xσ specializes to 0/Fq
,

then we again get a non-zero multiplicative bound.
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Problem Case

The Q-rational point (xσ)σ∈Σ on the d-th symmetric power modular
curve X0(p)

(d) specializes to (∞, · · · ,∞) at q.

Define the map

f (d)p : X0(p)
(d)
sm,/Z −→ J0(p)/Z −→ J̃/Z

D 7−→ [D − d(∞)] 7−→ [D − d(∞)] (mod γJJ0(p))

By an analogue of Mazur’s specialization lemma, we obtain that
f (xσ) = f (∞, · · · ,∞).
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We conclude that f is not a formal immersion at (∞, · · · ,∞).

The set of such ps is very small and can be explicitly bounded.
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TypeTwoPrimes

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a
K -rational p-isogeny of Type 2.

Let q be a rational prime admitting a
prime ideal q | q of residue degree f satisfying:

1 f is odd;
2 qf < p/4;
3 q2f + qf + 1 ̸≡ 0 (mod p).

Then q does not split in Q(
√
−p).

Proposition (B.-Derickx)

Assume GRH. Let K be a number field of degree d , and E/K an elliptic
curve possessing a K -rational p-isogeny, for p a Type 2 prime. Then p
satisfies

p ≤ (8d log(12p) + 16 log(∆K ) + 10d + 6)4.

In particular, there are only finitely many primes p as above.
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A cubic example
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From Superset to Set

Let’s run the algorithm on Q(ζ7)
+

; we get a superset of

PrimesUpTo(43) ∪ {67, 73, 163} .

How to determine which of these are actually in IsogPrimeDeg(Q(ζ7)
+)?

The main ingredient is

Theorem (Box-Gajović-Goodman, 2021)

For N ∈ {53, 57, 61, 65, 67, 73}, the set of cubic points on X0(N) is finite
and listed in Section 5 of [?].

Josha Box Stevan Gajović Pip Goodman
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The first cubic case of IsogPrimeDeg

Theorem (B.-Derickx)

Assuming GRH,

IsogPrimeDeg(Q(ζ7)
+) = IsogPrimeDeg(Q)
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Questions
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Question

Can Isogeny Primes v2 be implemented in PARI/GP?

Question
How can checking Type 2 primes be made much faster?
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