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Motivation

Lattices

Definition

A lattice is a finite free Z-module L together with a symmetric
bilinear form L x L — Z,(v1, v2) +— vy - vo which is
positive-definite: for all v € L ~. {0} we have v -v > 0.

\,

The category L of lattices is equivalent to its full subcategory of
objects for which L = 7" for some integer n: the set of objects is
the disjoint union over n > 0 of the set of symmetric positive
definite S € M,(Z) and

Hom(51, 52) = {M € Mn27n1(Z) ‘ tMSQM = 51}
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Motivation

Lattice genera

Definition
Two lattices L1, Ly are in the same genus if for every prime p we
have Zp ®z, L1 ~ Z, ®7 Lo (as quadratic spaces over Zp).

This partitions the category L of lattices into full subcategories
(groupoids) called genera.

Each genus only has finitely many isomorphism classes.

So each genus is (abstractly) equivalent to a finite collection of
finite groups.
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Motivation

Lattice genera and automorphic forms

Proposition
Let X be a genus, L a lattice in X. Let G be the corresponding
linear algebraic group: G(R) ~ {M € GLn(R) |*MSM = S}. Then
X is equivalent to the quotient of G(Af)/G(Z) by the left action
of G(Q):

e Natural bijection between X'/ ~ and G(Q )\G(A,c)/G(A)

o If[L] € X/ ~ corresponds to [x] € G(Q)\G(Ar)/G(Z) then

Aut(L) ~ G(Q) N xG(Z)x!

Concrete description of the space of automorphic forms for Gg,
level G(Z) and weight some algebraic representation V' of G(Q):

@ VAut

[LleX /~

Olivier Taibi Automorphism groups of lattices with roots



Motivation

Lattice genera: examples

For n > 1, lattices in dimension 8n which are even (the diagonal of
S is even) and unimodular (detS = 1) form a single (non-empty)
genus Xg, 1. Denoting c(8n) = [Xg, 1/ ~ |

c(8) =1, c(16) = 2, c(24) = 24(Niemeier), c(32) > 10°(King).

Example (ramified at 2)

Forn > 1, genus X1 of S = I, consists of all odd (=not even)
unimodular lattices. 2020: n = 26,27 (Chenevier), n = 28
(Allombert-Chenevier). | X551/ ~ | = 374,062.
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Motivation

Lattice genera: main example for this talk

Example (ramified at 3)

Lattices in dimension 27 which are even of determinant 6 form a
single genus X3 .

Computed a month ago (joint work with Gaétan Chenevier). There
are 285,825 (isomorphism classes of) lattices in this genus.
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Motivation

Computing a genus

To compute a genus X’ (even just as a list of objects), have to:
o Generate lattices in &' (Kneser neighbours, or from lattices in
some other genus).
@ Decide which are isomorphic (qfisom, or better: good
invariant discriminating non-isomorphic lattices).

@ When are we done / does this invariant really discriminate
non-isomorphic lattices?

Theorem (Smith-Minkowski-Siegel mass formula ~ Tamagawa

numbers for special orthogonal groups)

Let X be a genus of lattices. There is an explicit ( “easily”
computable) formula for its mass 3 jcx )/ | Aut(L)|L.

This allows us to check if we are done, provided we can compute
automorphism groups.
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Plesken-Souvignier

Given S € Mp(Z) symmetric positive definite, defining an inner
product (vi, v2) — vi - vo on L = 7", want to compute the group

G = Aut(L) ~ {M € M,(Z)|MSM = S}.

Plesken-Souvignier 1997, gfauto in GP.

Olivier Taibi Automorphism groups of lattices with roots



Plesken-Souvignier

Plesken-Souvignier: basic idea

Let m = maxdiag(S) = max{e; - ¢i|1 < i < n}. Compute
A={vel|v-v <m} (Fincke-Pohst, gfminim in GP). Have an
embedding

G — A"

g — (g(ei))i<i<n
Recursive (backtracking) algorithm to enumerate all g € G:

e Compute list of candidates for g(e;):
li:={efel|e]-ef=e1-e1} CA
@ For each €] € /1, compute list of candidates for g(ey):

be]) ={eclle-eh=e-emande-ef=e-e} CA

@ etc
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Plesken-Souvignier

Plesken-Souvignier: refinements

Refinements (crucial):

@ Only compute generators for G, which can be very big (e.g.
Leech € X7 ; has 8,315,553, 613,086, 720,000
automorphisms). Letting G; = Stabg(e, ..., ei—1), compute
generators for G, (trivial), G,—1 (slightly harder), ..., up to
G1 = G. Knowing Gj;1, compute G; - e; and generators for G;j.

@ Fingerprint: optimize (|¢;(e],...,e_;)|)i<i<n

@ Vector sums

@ Bacher polynomials (for very symmetric lattices)

Olivier Taibi Automorphism groups of lattices with roots



Improvement in the presence of roots

Back to example: Xy ¢

Recall: genus A3 5 has 285,825 (isomorphism classes of) lattices.
For almost all of them, there is a basis such that maxdiag(S) = 4,
and for these gfauto computes Aut(L) in about 3.5s.

Problem: 28 of them are not generated by vectors of length < 4,
they have about 13 - 10° vectors of length 6.

One of them is not generated by vectors of length < 6, it has
about 5 - 108 vectors of length 8.
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Improvement in the presence of roots

The root system of a lattice

Proposition

Let L be a lattice. Then R ={v € L|v-v =2} is a simply-laced
root system (in the span of R in the Q-vector space QL). In
particular it decomposes uniquely as an orthogonal disjoint union
of root systems isomorphic to one of A, forn>1, D, forn > 4
and E, for n € {6,7,8}.

Main point: for o € R, the symmetry

So - QL— QL
vi— v —(a-v)a

stabilizes R, because it stabilizes L.

The root system R generates a sublattice Q(R) of L. The Weyl
group W(R) = (sS4, € R) embeds in Aut(L), and is
“well-known".
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Improvement in the presence of roots

Based root systems in lattices

Proposition

Let L be a lattice, R its root system. Fix an order R of the root
system R (in particular R = R LU —R™). We have an isomorphism
Aut(L) ~ W(R) x Aut(L, RT). The morphism

Aut(L, RT) — Aut(R, RT) x Aut(R1) is injective.

Let A C R™ be the set of simple roots (in particular A is a basis
of Q(R)). The group Aut(R, R™) is well-known (as a subgroup of
Sa): if R~ | |m;R; with R; irreducible then

Aut(R, R) ~ HAut )™ X G
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Improvement in the presence of roots

Example: worst lattice in X5, ¢

The unique lattice L in X5, g which is not generated by its vectors
of length < 6 has root system R ~ D, and

o Q(R) ~{(x1,-..,x6) € Z*| >, x; even} (with standard
inner product), W(R) ~ {£1}?® x Gy and
Aut(R,RT) ~ &5,

o RLL has Gram matrix (6),

o Q(R)® RYE has index 2 in L.

So Aut(L, R™) is the stabilizer of L in Aut(R, R") x {&1}, and
may be computed with pen and paper ...
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Improvement in the presence of roots

Root systems of the 27 lattices in X5 5 which are generated by

vectors of length < 6 but not 4:
AxEe  A9D11De A11DoE7
A2D1gDg  D12D1s  AxDigkr
AgD17  Au1DoEg  A2DsDy

A3Ds DD  DpE?

AlDs A%D, Az
Rank is 26 or 27, except for As.

AEDis
D2 Dg
D14 D?
D3 Ds

A15D11 A3AgDia

AsDisEg  A1A7D13Ds
D1 E? D1gEs
A2 D D3 D
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Improvement in the presence of roots

Restrict to lattices L in X3 5 which do not factor as Q(A1) @ L.
Number of isomorphism classes of lattices by rank of the root

system:
-10*
T T
o9
30 aiES |
&
o
&
2 o
g g
1 - -
0f -eee - |
| | | | |

|
0 5 10 15 20 25
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Improvement in the presence of roots

An invariant

Goal: modify Plesken-Souvignier to compute Aut(L, R™).

Definition

Forv e L, inv(v,RT) := Aut(R,R") - (@ V)aen-

The group Aut(L, R™) preserves these invariants, in particular
g € Aut(L, R") maps €; to an element of

{vel|lv-v=e¢- e and inv(v,RT) =inv(e;, RT)}.

This invariant is computable: can choose representatives for each
orbit and map an element of Z2 to the corresponding
representative (sorting for certain lexicographic orders).
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Improvement in the presence of roots

@ Root system gives a number of (linearly independent) vectors
invariant under Aut(L, R™), e.g. a factor A” gives |(r +1)/2]
invariant vectors and a factor D;" gives r — 1 invariant
vectors. When the set / of such invariant vectors is large it is
cheaper to enumerate each

{vellv-v=e-eandVwel v-w=eg- w}

(reduces to translated Fincke-Pohst in dimension n — |/|) than
to filter the enumeration of all short vectors according to
inv(—, RT).

@ The sum of all v € L having given norm (> 4) and invariant
with respect to R is also invariant under Aut(L, R™), this
often yields new (linearly independent) invariant vectors.
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