PMRilu

Algebraic number Theory

Marine Rougnant
Université de Franche-Comté (Besançon, France)

Institute of Mathematical Sciences (Chennai, India) 19/02/24-23/02/24

Number FIELDS : INITIALISATION

We are interested in number fields $K=\mathbb{Q}[x] /(P)=\mathbb{Q}(\alpha)$ up to isomorphism. Given a monic irreducible polynomial $P \in \mathbb{Z}[x]$, the initialisation function nfinit determines invariants of K.
? $f=x \wedge 4-2 * x \wedge 3+x \wedge 2-5 ;$
? K = nfinit(f);
K contains the structure for the number field $K=Q[x] / f(x)$.
The function polredabs returns a canonical defining polynomial for K (this is the one given in the LMFDB for instance), polredbest gives a simpler defining polynomial for K (faster).
? \#nfisisom(nfinit(P), nfinit(polredbest(P)))
$\%=1$

Number FIELDS : INITIALISATION

The nfinit structure contains many informations :
? K.pol
defining polynomial
$\%=x^{\wedge} 4-2 * x^{\wedge} 3+x^{\wedge} 2-5$
? K.sign
 signature
$\%=[2,1]$
K has signature $(2,1)$: it has two real embeddings and one pair of conjugate complex embeddings.
? K.r1
 number of real embeddings
$\%=x \wedge 4-2 * x^{\wedge} 3+x \wedge 2-5$
? K.r2
 number of complex embeddings
$\%=[2,1]$

Number FIELDS : INITIALISATION

? K.disc
 discriminant
$\%=-1975$
? K.p
 primes ramified in K (div. of K.disc)
\% [5, 79]
The field K is ramified at 5 and 79 .
? w = K.zk[2];
? K.zk
$\%=\left[1,1 / 2 * x^{\wedge} 2-1 / 2 * x-1 / 2, x, 1 / 2 * x \wedge 3-1 / 2 * x^{\wedge} 2-1 / 2 * x\right]$
L'anneau des entiers de K est

$$
\begin{aligned}
\mathbb{Z}_{K} & =\mathbb{Z}+\frac{\alpha^{2}-\alpha-1}{2} \mathbb{Z}+\alpha \mathbb{Z}+\frac{\alpha^{3}-\alpha^{2}-x}{2} \mathbb{Z} \\
& =\mathbb{Z}+\mathbb{Z} \omega+\mathbb{Z} \alpha+\mathbb{Z} \omega \alpha
\end{aligned}
$$

Number fields : ELEMENTS

Element of $K=\mathbb{Q}(\alpha)$ can be reprensented as polynomials in α. We can also use linear combinations of the integral basis. We can switch between the two representations with nfalgtobasis and nfbasistoalg.
? nfalgtobasis(K, x~2)
$\%=[1,2,1,0]$ ~
$\alpha^{2}=1 \cdot 1+2 \cdot \omega+1 \cdot \alpha+0 \cdot \omega \alpha=1+2 \omega+\alpha$.
? nfbasistoalg(K, [1, 1, 1, 1]~)
$\%=\operatorname{Mod}\left(1 / 2 * x^{\wedge} 3+1 / 2, x^{\wedge} 4-2 * x \wedge 3+x^{\wedge} 2-5\right)$
$1+\omega+\alpha+\omega \alpha=\frac{\alpha^{3}+1}{2}$

Number fields : ELEMENTS

We perform operations on elements with the functions nfeltxxxx, which accept both representations as input.
? nfeltmul(K,[1,-1,0,0] , $\left.x^{\wedge} 2\right)$
$\%=[-1,3,1,-1]^{\sim}$
$(1-\omega) \cdot \alpha^{2}=-1+3 \omega+\alpha-\omega \alpha$.
? nfeltnorm($\mathrm{K}, \mathrm{x}-2$)
$\%=-1$
? nfelttrace(K, [0,1,2,0]~)
$\%=2$
$N_{K / \mathbb{Q}}(\alpha-2)=-1, \operatorname{Tr}_{K / \mathbb{Q}}(\omega+2 \alpha)=2$

NUMBER FIELDS : PRIME DECOMPOSITION

We can decompose primes with idealprimedec :
? dec = idealprimedec (K,5);
? \#dec
$\%=2$
? [pr1,pr2] = dec;
\mathbb{Z}_{K} has two prime ideals above 5 , that we call \mathfrak{p}_{1} and \mathfrak{p}_{2}.
? pr1.f
 residue degree
\% = 1
? pr1.e
 ramification index
$\%=2$
\mathfrak{p}_{1} has residue degree 1 and ramification index 2 .
? pr1.gen
$\%=\left[5,[-1,0,1,0]^{\sim}\right]$
\mathfrak{p}_{1} is generated by 5 and $-1+0 \cdot \omega+\alpha+0 \cdot \omega \alpha$, i.e. we have $\mathfrak{p}_{1}=5 \mathbb{Z}_{K}+(\alpha-1) \mathbb{Z}_{K}$.
? pr2.f
$\%=1$
? pr2.e
$\%=2$
\mathfrak{p}_{2} also has residue degree 1 and ramification index 2 .

An arbitrary ideal is represented by its Hermite normal form (HNF) with respect to the integral basis. We can obtain this form with idealhnf.
? idealhnf(K, pr1)
\% =
$\left[\begin{array}{llll}5 & 3 & 4 & 3\end{array}\right]$
$\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$
$\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$
\mathfrak{p}_{1} can be described as $\mathfrak{p}_{1}=\mathbb{Z} \cdot 5+\mathbb{Z} \cdot(\omega+3)+\mathbb{Z} \cdot(\alpha+4)+\mathbb{Z} \cdot(\omega \alpha+3)$.
$? ~ a=$ idealhnf $\left(\mathrm{K},[23,10,-5,1]^{\sim}\right)$
$\%=$
$\left[\begin{array}{lrrr}260 & 0 & 228 & 123\end{array}\right]$
$\left[\begin{array}{rrrr} & 0 & 260 & 123 \\ 105\end{array}\right]$
$\left[\begin{array}{rrrrr}0 & 0 & 1 & 0\end{array}\right]$
$\left[\begin{array}{llll} & 0 & 0 & 1\end{array}\right]$

We obtain the HNF of the ideal $a=(23+10 \omega-5 \alpha+\omega \alpha)$.
? idealnorm(K,a)
$\%=67600$
We have $N(a)=67600$.

Number fields : OPERATIONS ON IDEALS

We perform operations on ideals with the functions idealxxxx, which accept HNF forms, prime ideal structures (output of idealprimedec), and elements (interpreted as principal ideals).
? idealpow(K,pr2,3)
\% =
$\left[\begin{array}{llll}25 & 15 & 21 & 7\end{array}\right]$
[$\left.\begin{array}{llll}0 & 5 & 2 & 4\end{array}\right]$
$\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$
$\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$
? idealnorm(K,idealadd(K,a,pr2))
\% = 1
We have $\mathfrak{a}+\mathfrak{p}_{2}=\mathbb{Z}_{K}$: the ideals \mathfrak{a} and \mathfrak{p}_{2} are coprime

Number fields : Factorisation of ideals

We factor an ideal into a product of prime ideals with idealfactor. The result is a two-column matrix : the first column contains the prime ideals, and the second one contains the exponents.
? fa = idealfactor (K, a) ;
? matsize (fa)
$\%=[3,2]$
The ideal \mathfrak{a} is divisible by three prime ideals.
? [fa[1, 1].p, fa[1,1].f, fa[1,1].e, fa[1,2]]
$\%=[2,2,1,2]$
The first one is a prime ideal above 2 , is unramified with residue degree 2 , and appears with exponent 2.

Number FIELDS : FACTORISATION OF IDEALS

? [fa[2,1].p, fa[2,1].f, fa[2,1].e, fa[2,2]]
$\%=[5,1,2,2]$
? fa[2,1]==pr1
$\%=1$
The second one is \mathfrak{p}_{1}, and it appears with exponent 2 .
? [fa[3,1].p, fa[3,1].f, fa[3,1].e, fa[3,2]]
$\%=[13,2,1,1]$
The third one is a prime ideal above 13 , is unramified with residue degree 2 , and appears with exponent 1.

Number fields : CHinese remainders

We can use the Chinese remainder theorem with idealchinese :
? b = idealchinese(K,[pr1,2;pr2,1],[1,-1]);
We are looking for an element $b \in \mathbb{Z}_{K}$ such that $b=1 \bmod \mathfrak{p}_{1}^{2}$ and $b=-1 \bmod \mathfrak{p}_{2}$.
? nfeltval(K,b-1,pr1)
\% = 2
? nfeltval(K,b+1,pr2)
$\%=1$
We check the output by computing valuations : $v_{\mathfrak{p}_{1}}(b-1)=2$ and $v_{\mathfrak{p}_{2}}(b+1)=1$.

Number fields : CLASS GROUP AND UNIT GROUP

To obtain the class group and unit group of a number field, we need a more expensive computation than nfinit. The relevant information is contained in the structure computed with bnfinit.
? K2 = bnfinit(K);
? K2.nf == K
 the underlying nf structure
\% = 1
? K2.no
 class number
$\%=1$
K has a trivial class group.

Number fields : units

? lift(K2.tu)
torsion units
$\%=[2,-1]$
? K2.tu[1]==nfrootsof1(K) [1]
$\%=1$
K has two roots of unity, ± 1. We can also compute them with nfrootsof 1 .
? lift(K2.fu)
 fundamental units
$\%=\left[1 / 2 * x^{\wedge} 2-1 / 2 * x-1 / 2,1 / 2 * x^{\wedge} 3-3 / 2 * x^{\wedge} 2+3 / 2 * x-1\right]$
The free part of \mathbb{Z}_{K}^{\times}is generated by $\frac{\alpha^{2}-x-1}{2}$ and $\frac{\alpha^{3}-3 x^{2}+3 x-2}{2}$

```
? L = bnfinit( \(\left.x^{\wedge} 3-x^{\wedge} 2-54 * x+169\right)\);
? L.cyc
\(\%=[2,2]\)
? L.gen
\(\%=[[5,3,2 ; 0,1,0 ; 0,0,1],[5,4,3 ; 0,1,0 ; 0,0,1]]\)
\(\mathcal{C} \ell=\mathbb{Z} / 2 \mathbb{Z} \cdot g_{1} \oplus \mathbb{Z} / 2 \mathbb{Z} \cdot g_{1} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}\).
```

The two generators, g_{1} and g_{2} are given as ideals in HNF form.

NUMBER FIELDS : PRINCIPAL IDEALS

bnfisprincipal expresses the class of the ideal in terms of the generators of the class group (discrete logarithm)
? pr = idealprimedec(L,13)[1]
? [dl,g] = bnfisprincipal(L,pr);
? dl
$\%=[1,0]^{\sim}$
$\mathfrak{p}=(g) g_{1}^{1} g_{2}^{0}$ for some $g \in L$. In particular, the ideal is not principal, but its square is (pr is a 2 -torsion element).

NUMBER FIELDS : PRINCIPAL IDEALS

```
? g
\(\%=[0,1 / 5,2 / 5]^{\sim}\)
? \{idealhnf(L,pr) == idealmul(L,g,idealfactorback(L,L.gen,dl))\}
\% = 1
```

The second component of the output of bnfisprincipal is an element $g \in L$ that generates the remaining principal ideal. (idealfactorback $=$ inverse of idealfactor $=\prod_{i}$ L.gen $\left[i^{\mathrm{d}}{ }^{\mathrm{d}[\mathrm{i}]}\right)$

Number fields : PRINCIPAL IDEALS

We know that pr is a 2-torsion element ; let's compute a generator of its square :
? [dl2,g2] = bnfisprincipal(L,idealpow(L,pr,2));
? dl2
$\%=[0,0] \sim$
The ideal is indeed principal (trivial in the class group).
? g2
$\%=[1,-1,-1]^{\sim}$
? idealhnf(L,g2) == idealpow(L, pr,2)
$\%=1$
g 2 is a generator of \mathfrak{p}_{2}.

NUMBER FIELDS : PRINCIPAL IDEALS

We can use these functionalities to find solutions in \mathbb{Z}_{K} of norm equations with bnfisintnorm :
? bnfisintnorm(L,5)
\% = []
? bnfisintnorm(L,65)
$\%=\left[x^{\wedge} 2+4 * x-36,-x^{\wedge} 2-3 * x+39,-x+2\right]$
There is no element of norm 5 in \mathbb{Z}_{L}.
There are three elements of \mathbb{Z}_{L} of norm 65 , up to multiplication by elements of \mathbb{Z}_{L}^{\times}with positive norm.

```
? u = [0,2,1]~;
? nfeltnorm(L, u)
\(\%=1\)
```

We have found a unit $u \in Z_{L}^{\times}$.
? bnfisunit(L, u)
$\%=[1,2, \operatorname{Mod}(0,2)]^{\sim}$
? lift(L.fu)
$\%=\left[x^{\wedge} 2+4 * x-34, x-4\right]$
? lift(L.tu)
$\%=[2,-1]$
We express it in terms of the generators withbnfisunit:
$u=\left(\alpha^{2}+4 \alpha-34\right) \cdot(\alpha-4)^{2} \cdot(-1)^{0}$.

